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Abstract

Wildlife camera trapping is crucial for directing biodiversity conservation efforts around the globe.
In this thesis, we investigated which AI model and data design choices increase the viability of
running wildlife classification models on the edge. We explored which input image dimensionality
reduction techniques can be used to decrease the storage and networking requirements on the
edge and assist in reducing model size. These techniques include gray-scale conversion, image
resolution reduction, compression, and reducing the number of training images. Using Yolov5s as
a benchmark model, we show that it is possible to greatly reduce the input dimensions and image
size using a combination of these techniques without much compromise in terms of classification
performance. In the most constrained input, the performance of the benchmark model is signi-
ficantly reduced. We propose a novel VAE-SVM model approach tailored for input images with
greatly reduced dimensions. The VAE-SVM model outperforms Yolov5s in the most constrained
subsets, in particular for small animals such as rodents, while the VAE-SVM model size is signi-
ficantly smaller compared to the benchmark. Finally, we assessed alternative and non-traditional
techniques to aid in wildlife classification on the edge. These techniques include the use of color
histograms and local binary patterns, as well as a sequencing trick that uses background removal
and cropping around the moving animal. The first two approaches did not yield any significant
performance improvements, but the sequencing trick showed promise as a viable technique to im-
prove the performance of wildlife classification in specific cases. These findings provide valuable
insights and contribute to the development and feasibility of wildlife classification on the edge.
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Chapter 1

Introduction

Keeping track of the number and type of species of wildlife animals around the world using cam-
era traps is an ongoing and important effort. As wildlife counts and diversity have been declining
rapidly [16], accurately keeping track of species counts and diversity is crucial for directing conser-
vation efforts. The change and development of species population over time is a warning indicator
for the general health of ecosystems [43]. There is an urgent need for global assessment of wildlife
diversity, species counts, behavior, distribution, and overall abundance of wildlife [24]. In order to
support wildlife conservation efforts, having access to up-to-date indicators such as species count is
key in a data-driven approach to address the biodiversity crisis [32]. For the purpose of collecting
vast amounts of data for global and regional conservation initiatives and studies, remote monit-
oring tools have become a popular choice. In particular, there has been a rise in the deployment
of camera traps. The popularity of camera trapping stems from their non-invasive nature and
the option for standardized data sharing among ecologists [37]. Other remote sensing techniques
include drones, or unmanned aerial vehicle (UAV) surveying, and satellites. In this research, we
address open challenges in wildlife research in the scope of camera trapping.

Ecology and wildlife research has entered the big data domain, and if it is to scale, automation
is required with the support of machine learning in combination with expert domain knowledge
[54]. In the context of captured camera trapping imagery, there is a mismatch between the amount
of raw (i.e., unlabeled) image data and the resources available to manually label them [54]. La-
beling images is a labor-intensive task. Furthermore, the identification of wildlife on camera trap
imagery by humans can be prone to errors and systematic population overestimation [29]. As a
response to this challenge, the use of machine learning techniques such as Artificial Intelligence
(AI), and Deep learning (DL) more specifically, have proven to be useful in the context of wildlife
classification, aiding with large-batch image processing. These Deep learning models can learn
from existing labeled data (supervised models) and in certain cases from unlabeled data (unsu-
pervised models) [46][41][22][23]. There exist a number of publicly available pre-trained models
which are able to classify wildlife images, often with accuracy in the high 90-percentile ranges [11].
The application of custom- and publicly available models for the purpose of classifying wildlife
imagery in camera traps have been a significant step forward in allowing wildlife researchers and
ecologists to consume and analyze the available data efficiently.

A particular area of interest in the wildlife camera trapping domain is that of deep learning
models on the edge. From both a practical and research perspective, there exist an array of chal-
lenges to be solved before the theoretical feasibility of edge computing is met with practical use
[64]. Even still, classifying wildlife on the edge, meaning: on or near the camera traps, has the
potential to address significant challenges which arise in camera trapping. A large portion of avail-
able commercial camera trap solutions are manually deployed in the wild and require additional
trips on-location for retrieval of the captured images [40]. As these trips can be costly, it can take
months before data is collected and ready for analysis. A consequence is that population estimates
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CHAPTER 1. INTRODUCTION

following camera trap data measurements are a lagging indicator. Furthermore, allowing classi-
fication or pre-processing of images (such as removing empty images) on the edge is beneficial as
resources such as energy and storage are scarce on the edge. For instance, if the edge device has
connectivity, bandwidth can be reduced by only sending a selection of images to central servers.
In terms of storage, if a subset of images can be discarded on the edge, camera traps can be
left unsupervised for longer. Consequently, we are interested in increasing the viability of wildlife
classification on the edge using deep learning. In the following section, we will discuss some of the
challenges of camera trapping and running lightweight AI models on the edge, and further scope
our research direction.

Figure 1.1: Two examples of camera trap images containing wildlife. The image on the left is a
crow, taken from the ENA24 dataset [61] and the image on the right is displaying a fox, taken
from the Channel Islands dataset. [18]

1.1 Problem setting

Classification of camera trap images comes with a set of challenges both technical and non-technical
in nature. From a technical perspective, camera traps predominantly have limited options for real-
time data transmission [64]. As there is often limited or no internet capabilities on the edge, there
can be a significant delay between the monitoring of an animal, and the availability of the data
to observers and wildlife researchers. An extension of no real-time data transmission is the lack
of general remote access to camera data [64] requiring the need for manual trips to retrieve cam-
era trap data. The proposition of running classification models on the edge can help reduce the
frequency of required trips to camera traps. In no-connectivity settings, by filtering out images,
which are not interesting to researchers, on the edge, the amount of data that can be stored on
the device can be increased. In settings, in which there is sparse connectivity either due to limited
network availability or due to energy constraints, camera trap encounters can be caught early
or in real time and transmitted for analysis. This can be especially critical in settings such as
anti-poaching applications where response speed is of importance [53].

The camera device introduces additional challenges. When a camera trap is triggered it will
capture one or multiple images in sequence. When the triggering of the trap is caused by an event
that is not an animal, such as an environmental event as moving leaves, empty or ”Ghost” images
are captured [64]. Ghost images are a significant issue in the labeling and analysis of camera trap
images, as they can further increase the labor required to manually label the images as well as
influence the classification error rate [29]. Other camera-trapping image-specific challenges include
occlusion, motion blur, variance in lighting, and variance in scale [13]. The aforementioned chal-
lenges are domain-specific, and we will naturally address these in the scope of this research as a
result of running experiments, meaning we will not address any of these challenges in an isolated
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CHAPTER 1. INTRODUCTION

setting.

From the deep learning model perspective, the data used for training the models is often label-
sparse [46][35]. This means that if a supervised learning approach is used, manual labeling is
often required. Generalization of an existing model to a novel environment is not always feasible
[11][35], and for species that are relatively rare, generalization of performant models for these spe-
cies can be especially difficult. Furthermore, data can be further skewed by multiple images taken
in the same time frame, meaning that relative animal frequency can further skew the class-wise
availability [35]. Fortunately for researchers, a selection of publicly available wildlife models exist
which have shown to perform well at detecting animals even in before unseen settings, and as such
can aid in efficiently labeling new data. An example of such a model is MegaDetector [11].

Considering the edge domain, the predominant challenges are found throughout existing applic-
ations of deep learning on the edge (or the intelligent edge). Many of the edge-related challenges
found in the Wildlife classification setting are shared across domains and industries. Inference
latency of models on Edge can be high [19], energy is sparse on the edge: in the camera trapping
setting, certain camera traps run on solar cells as their energy source. Devices capable of running
deep learning on the edge require non-trivial computational power. This translates to the issue
that Wildlife camera traps are prone to be stolen since they are valuable pieces of equipment.
This is especially prevalent in areas where poaching is common as the data can be used to locate
specific animals [40]. Updating and maintaining models on the edge can be a complex task, es-
pecially when remote or even physical access to the device is limited. These challenges must be
addressed both in the academic scope as well as in practical settings in order to ensure successful
implementations of deep learning models for Wildlife classification on the edge. Our academic
contributions will lie mostly with the challenges introduced in this paragraph.

In this section, we have highlighted challenges that arise in the domain of classifying wildlife
on the edge. To reiterate our solution scope, the application of deep learning models has proven to
be a key piece in solving the principal problem of dealing with a large amount of raw wildlife im-
agery and limited (human) resources [60][15][62][22][23][41]. As an isolated solution, deep learning
techniques are key in addressing the data and resources mismatch, and by broadening the scope
we find that running variants of these models on the edge is the next frontier. Applying deep
learning on the edge is a promising approach that requires more research to address the current
limitations and challenges that exist in this domain [64]. Given this problem scope, we will now
define research questions, which will address both gaps in existing research as well as address open
practical challenges.
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1.2 Research questions

In the previous sections, we have introduced the problem setting of wildlife classification in the edge
domain and have discussed open challenges. The key hypothesis in this study is that the viability
of edge AI models running on or near camera traps will increase in the coming years. This increase
in practicability and viability will stem from jumps in research on classification models for edge
settings, as well as improvements in hardware and processing techniques. The goal of this research
is to aid in this aspect, and find methods that further increase this viability. The contributions
of this research thereby lie in exploring novel approaches and extending the body of existing re-
search on the topic of wildlife classification on the edge. This results in our main research question:

Which AI model and data design choices can enable edge-based wildlife image
classification?

To answer this research question, we formulate the following sub-questions:

I: Which design choices in reducing input image dimensionality can enable edge-based animal
monitoring using AI on the edge?

The reasoning behind choosing this subquestion is as follows. Images taken on wildlife camera
traps are often high in resolution and in RGB. We will explore reducing the input dimensions of
these images and the impact they will have on the performance of existing models. By reducing
the input dimensions, smaller models, which can be more energy efficient can be used for clas-
sification. In addition, the bandwidth and storage requirements of the edge devices can be reduced.

II: How can we design wildlife classification edge models tailored for reduced input image di-
mensions?

Given the reduced input resulting from the previous sub-question, we are interested in design-
ing a model specifically able to cope with constrained data. While traditional models are not
specifically designed with highly constrained input dimensionality in mind [34], we look to design
a model with an architecture specifically able to deal with constrained input.

III: To what extent can alternative and non-traditional imaging techniques increase the clas-
sification performance of edge models?

The last sub-question lies in its focus on alternative or non-traditional techniques to increase
the viability of wildlife classification on the edge. We will focus on techniques that can be applied
during the initial processing of images and may offer unique benefits over just classification using
deep learning models.

1.3 Outline

In this chapter, the problem context and research questions have been introduced. In Chapter 2,
existing literature on lightweight AI models, and classification of wildlife are reviewed. Chapter 3
presents background on key techniques and models used in answering our research questions. The
Methodology Chapter (Chapter 4) describes the specific methods used to answer our questions.
The Methodology Chapter also introduces our main contribution, the VAE-SVM model. The
experimental setup in Chapter 5 details the dataset selection and cleansing as well as specific
implementation details of the experiments. The results of our experiments are described in Chapter
6 followed by the answering of the research questions and conclusions in Chapter 7.
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Chapter 2

Literature review

In this chapter, we examine relevant literature on deep learning for wildlife classification purposes.
We start by reviewing the current state of research on deep learning for wildlife classification,
followed by scoping down on deep learning for wildlife classification on the edge. We conclude the
chapter by relating the existing research to our objectives and contributions.

2.1 Deep learning for wildlife classification

As deep learning techniques for image classification matured, these techniques were naturally ap-
plied to the domain of wildlife species classification problems as well. As a first, in 2014, Chen
Et al. [17] introduced a novel CNN (Convolutional Neural Network) to be used as a classification
technique for wildlife specifies recognition. The dataset consisted of 14,346 training images and
9,530 testing images from 20 species from North America. With a reported accuracy of 34 to
38%, it is clear that much ground is still to be covered in deep learning for wildlife classification
purposes at that point in time. More recent studies show it to be more viable for practice with
performance in the high 90% accuracy range in various datasets and settings.

An array of existing researchers have listed and detailed previous research on wildlife classi-
fication using deep learning in depth. For example, Zualkernan et al. performed an extensive
literature review in 2022 both in terms of general applications of CNN for animal classification
and for the edge specifically [64]. Palanisamy and Ratnarajah perform a systematic review of deep
learning for the detection of Wildlife in their 2021 study where they address recent advancements
and contributions in the field [49]. These two studies exemplify the abundance of research on the
application of current and past state-of-the-art CNNs such as ResNet, VGG, AlexNet, and Incep-
tionNet, either as the backbone for custom models or as the main model for Wildlife classification
and detection purposes. What many of the wildlife classification studies have in common is a level
of accuracy ranging from the mid-80 % to the high 90% ranges. Examples are Yousif et al. [62],
Gomez et al. [23] and Okafor et al. [48] using AlexNet. Miao et al. [41], Nguyen et al. [44], and
Gomez et al. ([22] & [23]) using ResNet variants. More recently in a 2023 preprint, Brookes et al.
[15] use ResNet-50 as a backbone for a study on Deep Metric Learning for great ape behavioral
actions. VGG is used by Yin Z. and You F. [60], and Norouzzadeh et al. [45]. InceptionNet and
variants are used in studies by Okafor et al. [48] and Allken et al. [7]. Each of these studies focuses
on animal classification, with dataset sizes ranging from low 4-digit numbers to datasets containing
mid-seven-digit samples. The diversity of available research and their performance demonstrates
the maturity of the domain of wildlife classification using CNNs.

Recent wildlife research efforts have also focused on an active learning approach supporting
the labeling and counting of animals in image data [13][46][9][51]. In active learning, the model
can request a human expert to label certain unlabeled data points. The goal in this is to only
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request manual labeling for data points which will introduce most new information (i.e., improve
the model performance the greatest). Thereby, the advantages of active learning are that the
total amount of required labeled data can remain low, and biases in the model can be addressed
by human interaction with the model. In an article by Miao et al. [42], they propose a hybrid
approach to wildlife image classification. In this approach, they combine machine learning and
human annotation in an iterative approach which includes a model inference step, a human an-
notation step by means of active learning, and a model update step. This approach achieves 90%
while only requiring 20% of data to be annotated by humans compared to existing approaches.
Although an active learning approach is promising for the field as it could result in fewer data
that need to be labeled for model training, the approach may not be applicable to support our
research objectives.

Given the existing research on wildlife classification, it is important to make a distinction
between the type of models used. Processing images in the wildlife domain for species recogni-
tion or counting can reasonably be divided into two categories, direct classification or two (or
multi)-stage classification. This division of categories has previously been made in research such
as that of Kaur and Singh [31], and that of Cuhna et al. [19]. The studies mentioned in the
previous paragraph fall into either of the approaches. The direct classification works by classifying
an image directly, without prior object detection, examples of this are the works of Cuhna et al.
[19] for filtering ghost images on embedded devices, and many of the previously mentioned studies
using state-of-the-art CNN-based architectures [22][23][45][48][44]. On the other hand, two-stage
classification first detects an object in the image and then assigns a species to the detected animal.
An advantage of first detecting an object (i.e., the animal) in an image is that it can be used to
preemptively remove empty or ’ghost’ images. As removing empty images is such an important
factor in practical camera trapping applications and research, not all wildlife research aims to
classify species, rather just the detection of the (lack of) animals could be sufficient. For example,
Cuhna et al. [19] focus their research to just removing the empty or ghost images.

Outside of traditional academic settings, there exist a variety of open and commercial models
specifically designed for wildlife classification. Wildlife researcher Dan Morris, who is involved
with a variety of projects relating to DL and camera traps including MegaDetector [11] and Wild-
life Insights [6], keeps track of a curated list of camera trap platforms and models using Machine
Learning as part of their tooling. A selection of these models includes Camelot [2], an open-source
camera trapping software; Wildlife Insights [6] which is a platform that provides tools and tech-
niques for camera trapping purposes; WildEye TrapTagger [5] which is a web application capable
of detecting, classifying and counting wildlife; and animl-frontend [3], an open-source frontend for
viewing and labeling camera trap data. The team at Microsoft AI for Earth developed a model
named MegaDetector which aims to detect objects in camera trap imagery [11]. The model pur-
posefully generalizes to many different environments and settings, so that researchers can be aided
in efficiently analyzing their data. MegaDetectorv5 uses the object detection model YOLOv5x6
as its backbone and is therefore particularly interesting as the Yolo (You Only Look Once) family
of models is used for benchmarking purposes in this research.

2.1.1 Wildlife classification on the edge

Applying deep learning models on the edge is a more niche subject of research, due in part due
to the aforementioned constraints of running models on the edge in the introduction. These
include associated costs and risk of hardware, energy constraints; and moreover the current im-
practicability in real-life scenarios. As remote networking capabilities are improving rapidly, and
advancements are made rapidly both in terms of hardware for AI on the edge as well as edge mod-
els, the feasibility of running classification on the edge increases. For instance, in recent years, the
cost of using Non-Terrestrial Network (NTNs) such as those based on satellite connectivity has
decreased significantly [10], which allow for network connectivity in remote areas. The collection
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of these advancements in edge computing and its neighboring technologies have led to an increase
in interest, viability, and research on wildlife classification on the edge in recent years. In this re-
search, we will not be describing recent advancements in the overlapping fields of edge computing
and deep learning specifically, but rather focus on the application in the Wildlife domain. Existing
research such as Convergence of Edge Computing and Deep Learning: A Comprehensive Survey
by Wang et al. [59] and the work of Li et al. [38] address the open challenges, opportunities, and
state of research in deep learning on the edge in general.

Scoping to deep learning on the edge for Wildlife Classification purposes, in the previously
mentioned 2022 study of Zualernan et al.[64], the authors provide an extensive literature study
on advancements of CNNs and Wildlife Classification Research on the edge. In the remaining
sections of their research, the authors propose an edge IoT architecture that uses deep learning
to convey wildlife classification results to a mobile app. Their study includes wildlife data with
66400 images and trains the InceptionV3, MobileNetV2, ResNet18, EfficientNetB1, DenseNet121,
and Xception neural network models. The authors found the Xception model to perform best, and
when optimized, deployment on the Jetson Nano proved to be the most performant edge device.
The authors acknowledge that unbalanced data remains a challenge, especially in the edge model
domain, and suggest that techniques such as semi-supervised learning might be able to address
this issue.

In the work of Cuhna et al. [19], the filtering of empty or ”ghost” images on embedded sys-
tems is discussed. In their work they make a distinction between classifier and detection models,
similar to the distinction between single-stage and multi-stage classification made previously, and
conclude that the detection models are superior in their precision-recall performance, but are more
costly to run on the edge. What is particularly interesting for our research is that we will use a
detection model as a benchmark model to compare our novel model approach to, meaning that our
research advances the ongoing discussion on the viability and trade-offs between detector models
and classification models on the edge.

On the notion of detection models, Arshad et al. [8] present a wildlife identification and count-
ing device which is able to track and count individual deer. Their method is based on the YOLOv3
object detection model and was deployed on an edge device. Without manual tagging or marking,
the deer are counted by using discriminative correlation filters. Their approach aims to address
the re-counting problem, a situation that occurs when the same animal is counted multiple times.
Their results show that 17 out of 20 deer were correctly counted, taking a total of 0.3 computing
hours compared to 18.5 manual hours of counting. This reaffirms the place of classification and
counting of wildlife on the edge using deep learning as a factor to decrease the labor required for
analysis by researchers.

In the study by Jia et al. [27], the authors use Neural Architecture Search based on Regression
Trees (NASRT) to find CNN architectures for wildlife classification scenarios on the edge. Using
NASRT, they are able to design the architecture specifically for resource-constrained devices and
are able to adaptively change the architecture to fit the limited resources of specific edge devices.
The results show to be able to compete with manually designed networks. While the research is
relevant and interesting in the domain of finding and optimizing novel CNN architectures for an-
imal classification on the edge, Neural Architecture Search is not a direction that will be ventured
into in this research.

Outside of the camera trapping context, there exist an array of alternative approaches to
Wildlife classification on the edge using embedded devices. Examples are the work of Gutierrez-
Galan et al. on behavior recognition, classification, and monitoring using a collar-based device
and a wireless sensor network[25]; and the work of Dominguez-Moreles et al. where the authors
develop a hierarchical wireless sensor network using a collar-based device, motes(routers) and
base-stations(coordinators) in order to classify and track the behavior of animals in the Doñana
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National Park [21]. These studies show

2.2 Literature in the context of our objectives

In this section, we highlight studies that are especially relevant to our research objectives.

The 2022 study of Leorna et al., [37] evaluates the performance of the MegaDetectorv4.1 model
using data from an ongoing camera trapping study in Arctic Alaska, USA. The authors give in-
sights into the limitations of such models in terms of failure to detect wildlife based on animal
sizing and distance. They describe a minimum detection size limit for camera motion detection
sensors, the MegaDetector model, as well as humans. They found the minimum detection limit
for a caribou in a camera trap image to be 600px for the camera sensor, around 60px for the
MegaDetector, and 4px for human reviewers. For the purpose of this research, we can expect
existing models to struggle with reduced input at the point where an input image is at a maximum
of 60x60 in dimensions. These resolutions can be a useful starting point for the input dimension-
ality reduction section of this research, as they indicate the limitations of existing state-of-the-art
models in terms of minimal detection limits.

Continuing the thought of input constraints in terms of image resolution, in the research of
Koziarski et al., [34] the author evaluates to what extent low resolution impacts the perform-
ance of deep learning models for image recognition. Their results suggest that contemporary (i.e.,
traditional) neural network architectures are impacted significantly by reduced input image resol-
utions. They propose that super-resolution, that is increasing the resolution by artificial means,
prior to classification can alleviate some of the impacts. However, this is only possible so long
as the resolution of the image was not decreased too severely. For the context of our research,
super-resolution is not relevant. Given this, the insight that contemporary neural architectures are
impacted as such by decreased resolution further supports our goal of introducing a novel model
approach capable of dealing with low-resolution images.

A different constraint to reducing the input dimensions is that of converting multi-channel
to single-channel images, or RGB to gray-scale. In a study by Tabak et al., the authors use a
model based on the ResNet-18 architecture to classify wildlife camera imagery [52]. Interestingly
enough, the authors found that the model performance for images during the daytime performed
almost just as well as the images taken at night (accuracy = 97% and 98%, respectively). This is
promising as this indicates that possibly wildlife images can be analyzed and stored in gray-scale
without much impact on performance, which can be beneficial in edge scenarios.

In the context of models for lightweight object detection and classification on the edge, Danish
et al. [20] discuss challenges faced when analyzing video streams on the edge, specifically for object
tracking. They find that existing sensors use high amounts of energy while continually tracking
objects, and consequently propose a novel approach to track the movement of people while re-
taining a reasonable accuracy. Interestingly, they find that the Yolov5 family of models (n5 &
n6 specifically), which is one of the models which will be employed in this research, work poorly
on the edge as their latency can be comparable to other models, but their performance scores
are poorer. Continuing with the thread of the use of the Yolo family of models in the context
of our research, researchers Zhao et al. [63] perform a case study using the Yolo models in the
context of real-time wildlife classification. Although the original Yolo architecture outperformed
their architecture approach in terms of detection accuracy, by replacing the original backbone with
a MobileNet network architecture, the researchers were able to increase the detected frames per
second on a CPU-bound device significantly.

One of the questions addressed in this research is on alternative techniques to increase classific-
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ation results on the edge. In a study by Okafor et al. [48], the authors compare the performance of
deep CNNs and Bag of Visual Words (BOW) models for wildlife classification. The performance
results on a novel dataset (Wild-Anim) showed that each of the CNN models (AlexNet and Google-
Net based) outperformed the BOW techniques significantly. Additionally, by reducing the breadth
in the neural layers, the researchers are able to decrease the computing time of the CNN models
while proving to be competitive with the unmodified architectures. In the BOW and modified
HOG-BOW approaches, the RGB color space is used, and the authors suggest studying the effect
of the use of different color spaces in combination with deep learning techniques. Their results give
rise to the idea that alternative techniques to increase classification results on the edge likely will
not replace deep learning approaches, but instead should be considered as complementary methods.
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Background

This chapter introduces a selection of techniques and models used in the methodology for answering
our research questions. Some level of prior knowledge in the machine learning domain is assumed
by the reader.

3.1 The Variational Autoencoder

3.1.1 Autoencoders

An Autoencoder is a feed-forward neural network that maps high-dimensional data to lower-
dimensional data and reconstructs it back into higher-dimensional data. It consists of two parts: an
encoder which encodes the higher dimensional data into the lower dimensional space (also referred
to as the latent space), and a decoder which translates the data point from the lower dimensional
space back into higher dimensional space. Thereby, it can act as a way of compressing an input into
the latent space. The encoder and decoder are neural networks that learn a scheme to encode and
reconstruct the input data. The learning optimizes this compression and decompression schema
using a loss function based on the distance between the input and the reconstructed output. Since
autoencoders are trained using a loss based on the reconstruction of the output, the model is
unsupervised (i.e., the training data can be unlabeled). Example applications for autoencoders
include data compression, feature extraction, and anomaly detection. Where the Autoencoder
encodes the input deterministically, the VAE which is introduced in the following subsection
generates a probabilistic representation of the data in the latent space.

3.1.2 Variational Autoencoder

The Variational Autoencoder is a type of autoencoder that learns a probabilistic representation of
the input. The VAE was first introduced by D.P. Kingma and Max Welling in 2013 [33]. Figure
3.1 shows a high-level architecture of a VAE. The key feature of the VAE as compared to the
Autoencoder which is relevant to this research is that the latent space is more disentangled and
structured. This is due to the stochastic relationship between the input of the encoder and the
input of the decoder. In addition to the latent space being more structured, the VAE allows for
generating new samples of data using generated points in the latent space. For the purpose of this
research, our focus lies on the structured relationship between input and location in the latent
space. During training a VAE, we optimize for the ability to reconstruct the input image based
on the input image in addition to the Kullback-Leiblker (KL) divergence, which helps ensure the
latent space distribution.
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Figure 3.1: Basic VAE architecture. The input X is reconstructed as output X’ by first compressing
the input in the latent space. This is followed by sampling from the latent space and generating
a reproduction from X as X’. Image: [55].

3.1.3 Latent space visualization

Visually representing the latent space by plotting data encoded by a VAE model can be useful
to (visually) determine the extent to which encoded data is separable in the latent space. The
main challenge in visualizing the latent space is the high dimensionality of the data in the encoded
latent space. Although the encoder is a compression mechanism, the latent space may still be
represented in dimensions that are not feasibly visualized without any prior processing (for in-
stance a 128-dimensional vector). There exist multiple techniques for achieving this, most notably
Principal Component Analysis (PCA) and t-SNE (t-Distributed Stochastic Neighbor Embedding).

This research makes use of t-SNE for reducing the number of dimensions of data that have
been encoded to the latent space. t-SNE iteratively converts similarities between points to joint
probabilities and uses KL divergence to minimize the distance between these joint distributions.
For our purposes, we use this technique to reduce the data into 2-or 3-dimensional space. That
way, the data can be represented using traditional visualization techniques. An example of a
visualization based on T-SNE embeddings can be found in Figure 3.2.

Figure 3.2: Example T-SNE embedding of the MNIST dataset, a dataset of handwritten digits.
The digits are labeled by color, and a clear separation of the embeddings of the digits can be
observed by the spaces between the clusters of digits. Image: [57].
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3.2 Color and texture descriptors

Techniques that use color and texture descriptors for feature engineering could prove useful in
the context of classification on the edge. We consider these techniques in the context of the
third research sub-question on alternative supporting techniques for the classification of wildlife
on the edge. In the work of Bianconi et al. [12], a historical overview and taxonomy of color and
texture descriptors for visual recognition are given. In this study, the authors divide color and
texture descriptors into data-driven (deep learning) approaches and theory-driven (hand-crafted)
approaches. The theory-driven approaches are a-priori approaches where, regardless of the data,
the operations used for feature engineering remain the same. In the context of our research, we
theorize that if the a-priori-defined operations are relatively cheap in terms of computations, they
could result in a cheap way to extract features from an image. This would assist in improving
model performance on the edge while remaining cheap in terms of computational cost. Two a-
priori techniques are of particular interest to us, which are the Color Histogram and Local Binary
Patterns.

3.2.1 The Color Histogram

The color histogram is an a-priori technique for visual feature extraction. Although conceptually
and technically simple, it has shown to be an effective tool to discriminate for color textures [12].
It captures the distribution of the colors in an image by counting the counts of the color values for
each of the color channels in an image. In the 8-Bit RGB images used primarily in this research,
this means the counts of each of the 256 values for each of the red, green, and blue color channels.
Figure 3.3 shows an example of the extracted color histogram from the cat image.

Figure 3.3: An image of a cat with heterochromia, and the associate color histogram. The x-axis
of the color histogram represent the RGB values, and the Y-axis the frequency. Image left: [58]
Image right: [56].

3.2.2 Local Binary Patterns

Similarly to Color Histograms, Local Binary Patterns is an a-priori technique for extracting fea-
tures from an image. In particular, it is a texture descriptor that works by generating a label (or
binary code) for each pixel based on thresholding its NxN neighborhood, where N = 3 is what
was first used by Ojala et al. [47] who introduced the technique in 1996. By using a sliding window
approach, a binary code can be generated for each of the pixels in an image. Based on the bin-
ary codes (i.e., the local binary patterns), a histogram is computed which acts as our feature vector.
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3.3 Models

In this section we give a brief introduction two of the models used in this research.

3.3.1 Yolo

The YOLOv5 (You Only Look Once) model is the fifth edition of an deep learning object de-
tection model which is developed by Ultralytics [28]. It was released in June 2020 and showed
state-of-the-art performance at the time of release [28]. It serves as the backbone for MegaDetect-
orv5, a well-performing public wildlife animal detection model [11]. In the context of single-stage
and multi-stage models described in the Literature Chapter 2, the Yolo model is a single-stage
model. Although both a bounding box and classifier model, it is a single-stage model as both the
bounding box and classification of the object occur in one pass. The Yolov5 model series are in
fact a collection of models ranging from 140M parameters in size down to 1.9M parameters in
size. As Yolov5 has previously been used as the backbone for existing wildlife studies (e.g., [20]),
and the MegaDetector model in particular, the Yolo models make for a useful baseline comparison
model. The use of the Yolo family of models as part of our Methodology is described in Section
4.3.1 and the experimental setup can be found in Section 5.2.1.

3.3.2 GhostNet

In 2020, Han et al., [26] proposed a novel CNN module called the Ghost module. This is a ’plug-
and-play’ component which is able to upgrade existing CNNs by generating feature maps more
efficiently by using cheap operations. For embedded or edge devices with limited computational
resources, the increased computational efficiency can be especially beneficial. The authors show
that a model using the ghostnet module can achieve better performance than MobileNetV3, a
popular edge model, while having similar computational costs associated with the models. The
application of the GhostNet in context of our methodology is discussed in Methodology Section
4.3.2 and the experimentation details are described in Section 5.2.2.
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Methodology

The methodology chapter covers the description of techniques used to answer our research and
sub-questions. We begin by describing the relationship between the methodology and research
questions. This is followed by explaining the data pipeline approach. Lastly, the classification
models are addressed. In the next chapter, the experimental setup will be explained.

4.1 Methodology and research questions

This section covers a structural overview of the methodology and how it relates to the research
objectives. We begin by taking a look at the complete overview in Figure 4.2. We start by ex-
plaining the model pipeline which gives a high-level view of the experiments. This is followed by
the data pipeline in Section 4.2 (found below in the overview figure) and the classification models
in Section 4.3, i.e., the remaining sections in the overview figure.

The top section in the complete overview is shown separately in Figure 4.1. This model pipeline
is an abstraction of the high-level approach taken for each of the experiments of the research.
Plainly put, each experiment involves classifying wildlife in camera trap images. Two types of in-
put images are considered, that is, Single camera trap source images which are images that are not
necessarily taken in sequence, and Sequential camera trap source images which are images taken
in sequences of 3 or more images in a row. Each of the images in the experiments is run through
a data pipeline, which processes the images according to various parameters. This data pipeline
generates increasingly small images based on compression, resizing, and gray-scale conversion and
is further described in Section 4.2. The next step in the model pipeline is the classification models.

Three classification models are considered. First, the Yolo models, which are purely used for
evaluation purposes on the increasingly small input images; second the GhostNet models and
their variants, used for the experiments with non-traditional approaches to supporting wildlife
classification on the edge; and third, the VAE-SVM model which is our novel model approach.
Each of the models classifies the images after which the results are saved. For each of the results,
we focus on class-wise precision, recall, and F1 score as evaluation metrics.
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Figure 4.1: Model pipeline
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4.1.1 Approach to answering the research questions

The first research sub-question concerns reducing the dimensions of the input data. We have
previously introduced the importance of decreasing input dimensions for deep learning networks
in relation to the capability of running models on the edge. To briefly reiterate, reducing the
input dimensions can be useful in particular in terms of reducing the computational cost of run-
ning the models, and alleviating computational and energy bottlenecks faced on the edge. The
approach taken in this methodology is to structurally decrease the input dimensions of images by
resizing, compressing, and gray-scale conversion using the data pipeline, as well as decreasing the
number of total training samples. Using a variety of subsets with decreased input dimensions, we
test the benchmark Yolov5s models to our custom models. This approach is followed up to the
point where these models no longer function well given their input. Concretely put, this occurs
when the classification accuracy is significantly decreased, meaning well below the original model
capabilities, but meaningfully better performance than random guessing. In subsection 4.3.1 the
approach to testing the influence of input dimensionality reduction on the Yolo models is described.

The second research sub-question aims to design a model capable of dealing with reduced in-
put dimensionality. Traditional machine learning models are not designed to deal with very small,
compressed, and gray-scale images by default, and we need to investigate their ability to cope with
constrained input. Additionally, we design a model able to specifically cope with these constraints
and aim to increase the classification capabilities of wildlife images as compared to current state-
of-the-art models while being a small (i.e. edge) model. Concretely, the model should be able to
deal with images of size 64x64 pixels in gray-scale. As the original images are up to 3000x2000
pixels in size, this is a significant reduction. The model which was designed for answering this
research sub-question is the VAE-SVM model. This model is found in the overview in the overview
Figure’s subsection labeled VAE + SVM model overview. The design choices for this model are
discussed in Section 4.4.

The third research sub-question looks at alternative techniques to improve classification on the
edge. In particular, we look at background subtraction techniques to generate bounding boxes for
wildlife, and extraction of local binary patterns and color histograms as features. In the Back-
ground Chapter 3.2, the a priori techniques of Color Histograms and Local Binary Patterns are
highlighted. The background subtraction technique is used to create a bounding box around an-
imals in a computationally efficient manner. Camera trap images taken in sequence can be used
in combination with background subtraction techniques in order to create a bounding box around
the animals. We investigate the effectiveness of these three techniques using the GhostNet model
[26] and variations thereof. Experiments run with this model look at the effectiveness of applying
these techniques in terms of their impact on the performance metrics described in the previous
Section.

4.2 The data pipeline

We designed a data pipeline for a variety of purposes. Various subsets of the datasets are required
to run the experiments, each with different specifications. Examples of such specifications are
varying the number of color channels, adding compression, and reshaping the image. Therefore,
a modular data pipeline is useful in creating these subsets. An overview of the data pipeline can
be found in overview Figure 4.3. The image pipeline consists of two distinct parts, i.e., a feature
extraction part, and steps to alter the images to fit dimensionality reduction purposes. The feature
extraction part is used to extract local binary patterns and color histograms from the images. The
dimensionality reduction part is used to compress, resize, and convert the images to gray-scale.
The local binary patterns and color histogram features extracted are only used in the experiments
with the GhostNet model. Images that are reduced in size using the dimensionality reduction
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part of the pipeline are used throughout the experiments. Details on the created subsets and their
naming can be found in the experimental setup Section 5.1.

Figure 4.3: Data pipeline

4.2.1 Feature extraction

The input to the data pipeline is either a single camera trap image or a batch of images from the
same sequence. The first step of the data pipeline is the creation of color histograms and local
binary patterns from the unaltered source images, as at this point no information is lost yet due
to resizing, compression, or other means. The color histograms and local binary pattern data are
saved separately from the images. Considering the implementation, the three color channels are
saved in 256 bins each, i.e, one bin for each of the 8-bit color depths. Local binary patterns are
extracted with a radius of 1.5 pixels. The color histograms and local binary patterns are then
appended into a single array and saved to disk for later use with the GhostNet experiments.

4.2.2 Background subtraction

One of the alternative techniques aimed at supporting wildlife classification on the edge is the
background subtraction of wildlife images taken in sequence. For sequential images, this is the
step following the feature extraction in the data pipeline. The main idea behind the background
subtracted technique is that we can generate bounding boxes around animals in the wildlife im-
agery by using the subtracted background.

The background removal is implemented using the OpenCV library [14] using the MOG2 back-
ground subtraction algorithm and was implemented in Python 3.x. The algorithm to detect the
backgrounds of the images can best be described by the pseudocode found in Algorithm 2. The
input to the algorithm is a sequence of images, and the output is a sequence of those images
where the background of each image in sequence has been removed. Using the first image in the
sequence, the background of the second image is removed. This is repeated for images 3, ..., n.
Finally, using the last image, the background of the first image is removed. By taking the inverted
background, i.e., pixels that are not part of the background, non-background object boundaries
are highlighted. These boundaries are being used for generating the bounding boxes. The images
will have some background noise at this point, which makes the generation of bounding boxes
difficult. In order to remove the noise, a repetition of erosion and dilation was used. The number
of erosion and dilation steps was experimented with, but in the implementation, two erosion and
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dilation steps were chosen. An additional erosion and dilation step is performed during the bound-
ing box generation. Varying the number of erosion and dilation steps has a significant influence on
the effectiveness of creating the bounding boxes. As an example, balancing the number of steps
determines whether or not small animals can be found (e.g. birds or rodents) or instead whether
or not the resulting bounding box is larger than the animal due to background noise. This balance
is shown in Figure 4.4. An example of both correctly and incorrectly cropped images due to the
number of erosion and dilation steps is shown in Figure 4.5. Following the background subtraction
step, the bounding box is extracted from the image by cropping around the highlighted object
boundaries, and the image is cropped to the bounding box.

The bounding box generation is implemented by following the pseudocode of Algorithm 1. The
algorithm takes a sequence of images as input and returns a sequence of images, where each image
is cropped to the bounding box of the corresponding image in the input sequence. The back-
grounds are generated with the algorithm described in the previous paragraph. Bounding boxes
are generated by finding the contours of the object boundaries of the inverted background. The
minimum and maximum x and y coordinates of the contours are used to generate the bounding
box. An alternative technique would be to use the largest contour in the image and generate a
minimum bounding box around it but based on the results of non-formal experimentation, that
did not yield better bounding boxes. Generating contours is performed using the OpenCV library
[14]. The implementation of the step GetBox is based on an algorithm posted by a user on a
Stack Overflow discussion [30]. The implementation provides a set of contours given the subtrac-
ted background, which we then use to find the minimum and maximum contour coordinates as
described above.

If the bounding box does not meet a minimum size threshold, it is disregarded. In the imple-
mentation, the threshold is set at 10 pixels both in the horizontal and vertical direction. Concretely,
this means that if the minimum bounding box is smaller than 10 pixels in either direction, the
image is not cropped. This is done to prevent cropping of images of only background noise, or
otherwise unusable cropped images. If an image does not meet this requirement, the original
image is returned. The last step before cropping is adding padding around the bounding box of 15
pixels on each of the sides while taking into account the boundaries of the source image. The al-
gorithm concludes by returning the sequence of cropped images (referred to as ’sequenced’ images).

A note on bounding box generation by means of background subtraction is that, in theory, this
technique can be extended to all images captured on a single camera trap location by using im-
ages captured in nonconsecutive events. The camera trap location is often quite similar in terms
of the background of the captured images. However, in practice, even slight alterations of the
existing background (e.g. falling branches or changing lighting situations) make this unfeasible.
Given that the environment can change significantly between images captured even on the same
camera, the extracted background can no longer be a trustworthy indicator of animal movement.
Consequently, only images captured concurrently in a sequence are considered in this approach.

4.2.3 Dimensionality reduction

The final steps in the data pipeline concern dimensionality reduction. As previously discussed,
reducing the dimensions of an image, both in terms of file size and image size, can have a signi-
ficant influence on the computational power required to classify the image. Therefore, reducing
dimensions is a useful technique in edge classification scenarios. In our pipeline, we first resize the
images, then optionally, the images are transformed into gray-scale or single color-channel images.
Our implementation of wavelet compression only works on single-channel images, so the gray-scale
images can be compressed with wavelet transformation in the step that follows. Lastly, the images
can be compressed with regular or ’naive’ compression.
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Algorithm 1 Generating bounding boxes using backgrounds

1: procedure GenerateBoundingBoxes(seq)
2: bgs← GenerateBackgrounds(seq)
3: output← ∅
4: for i← 1 to length(seq) do
5: image← seq[i]
6: bbox← GetBox(bgs[i])
7: if size(bbox) > (Xthresh, Ythresh) then
8: paddedImage← addPadding(bbox)
9: output.append(paddedImage)

10: else
11: bbox← ∅
12: output.append(seq[i])
13: end if
14: end for
15: return output
16: end procedure

Algorithm 2 Generating backgrounds

1: procedure GenerateBackgrounds(seq)
2: output← ∅
3: for i← 2 to length(seq) do
4: bgSubstractor ←MOG2(seq[i− 1])
5: bg ← bgSubstractor(seq[i])
6: bg ← ErodeDilate(ErodeDilate(bg))
7: output.append(bg)
8: end for
9: bgSubstractor ←MOG2(seq[length(seq)])

10: bg ← bgSubstractor(seq[1])
11: bg ← ErodeDilate(ErodeDilate(bg))
12: output.push(bg)
13: return output
14: end procedure
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Resizing

There are several methods of reducing the total number of pixels in an image, also known as
resizing. For resizing in our data pipeline, we have chosen a letterbox resizing scheme (see Figure
4.6). The result of letterbox resizing is that the final image has the width and height of the target
dimensions, while also retaining the aspect ratio. The drawback is that there are areas (or bars)
on the top and bottom of the image for images that are empty. This is the result of resizing images
with a larger width than height to square dimensions. All images in this research are letterboxed.
A result of letterboxing images is that the resized images contain an area with no meaningful in-
formation, which is obviously a drawback. Other resizing options include cutting away the edges
(commonly called ’cropping’) which is more efficient in terms of information captured in the result-
ing image as we do not have bars at the top and bottom of the image, but can suffer from cutting
away meaningful information such as wildlife at the edge of the images. Alternatively, having an
irregular aspect ratio is an option, but this is not ideal as many models require square dimensions.
Among these choices, the letterbox approach was deemed most appropriate as we do not want
to lose information potentially by cutting it away, and the images need to be equal in width as
well as height. The images used in the experiments are resized between a range of 640x640 down
to 64x64. A note on the naming throughout this research, in the datasets Section 5.1, subsets
which are labeled as cropped, are in fact resized using letterboxing. This is a misnomer that is
consistently found throughout the experiments and their results.

An implementation detail on resizing and cropping is that one of the models used in the exper-
iments, the Yolov5 model, requires a bounding box of the animal in addition to the classification
label during training. The bounding box is a 4-tuple of the form (xmid, ymid, width, height).
When resizing the images, the bounding box needs to be resized as well using the new ratio of the
image.

Compression and conversion to gray-scale

The following step in the data pipeline is the option to convert the image from RGB to gray-
scale (or to ”single-channel”). Theoretically, converting an image to gray-scale would reduce the
information stored in the image by a factor of three. While this is true in terms of information
available to the consumer of the image (i.e. the model), conversion to gray-scale does not reduce
the image size on disk by the same factor of three. This is due to how JPEG encoding efficiently
stores RGB images. However, gray-scale conversion still leads to a meaningful reduction in image
size while retaining relevant information for classification purposes. This is especially true in the
wildlife setting, as many images are taken in lighting environments that do not benefit much from
a full-color scale.

Following gray-scale conversion, the images are optionally compressed with wavelet trans-
formation. Wavelet compression is a technique we chose to use in addition to regular or naive
compression as it mostly aims at reducing noise components in the data. Consequently, we deem it
a useful approach in reducing the size of images on disk while retaining useful information for clas-
sification. Both wavelet compression and regular compression are lossy compression techniques,
meaning information is irreversibly lost after compressing.

In the final stage of the data pipeline, the implemented final step in the data pipeline is resizing
the image to the desired dimensions using letterbox resizing and saving it to disk. During saving
to disk, regular or ”naive” compression can take place to reduce the storage required to store
the images. Naive compression is implemented with the Python implementation of OpenCV [14].
OpenCV, in turn, makes use of LibJPG’s jpeg set quality() which encodes the image using color
subsampling, quantization of the DCT-coefficients, and Huffman-Coding, where the quality loss
is controlled by the user.
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Figure 4.4: The influence of varying erosion and dilution steps in combination with noise in the
background. The first (top) image shows the highlighted objects after removing the background.
The second and third image show bounding boxes based on varying the amount of erosion and
dilution steps, and the resulting generated bounding box (prior to reshaping to square dimensions).
The final image is a reference image to showcase just cropping the image.
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Figure 4.5: Example of the effect of using the ”sequencing” trick on a selection of images with
rodents. The first two sequenced images correctly crop the image around the rodent in the image,
but the third example does not correctly crop around the rodents.

Figure 4.6: A selection of image resizing techniques. In this research, we make use of the letter-
boxing scheme, which introduces borders to fill the blank space while retaining the aspect ratio of
the original image within the borders.
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4.3 Classification Models

4.3.1 Yolo models for evaluating dimensionality reduction

Figure 4.7: Overview of the input dimensionality reduction experiments

Reducing the input dimensionality can drastically reduce the computational load of image
classification using neural networks. In the previous section, we discussed the various techniques
which can be used to reduce the input dimensionality. Using varying parameters for the steps in
the data pipeline, we construct a set of subsets with varying image sizes, compression amounts,
and color channels (RGB and gray-scale). The constructed subsets can be found in Section 5.1.
The object detection and classification model Yolov5 [28] has been trained and evaluated on these
datasets. Two Yolov5 models have been used in this research; the large model (Yolov5l) and
the smaller model (Yolov5s) fit for edge computing scenarios. The smaller model was considered
since it could be run on the edge, and the larger model was used as a benchmark for comparison
purposes. There exists an even smaller model, Yolov5n, but the size of Yolov5s to the GhostNet
models is more comparable, so Yolov5s was chosen. Details on the experimental with Yolov5 can
be found in Subsection 5.2.1.

The reasoning behind choosing the Yolov5 large and small models as a benchmark or ”golden
standard” is in part due to the high performance and reliability. The Yolo models have been
widely used and studied, and at the time of release, Yolov5s received state-of-the-art results on
benchmark datasets. In addition, Yolov5’s use as the backbone of MegaDetector [11] not only
showed its success in the field of wildlife camera trapping but also resulted in a large amount
of data available for training. This is true in particular for object detection models which re-
quire bounding box information in addition to labels. The available data in combination with the
straightforward implementation made it an accessible choice for this research. These factors made
us choose Yolov5 as the benchmark for the input dimensionality reduction experiments.

4.3.2 GhostNet model and its variants

Classification of wildlife imagery using deep learning models can be costly in terms of computa-
tional power. In edge scenarios, resources in terms of computational power and energy are sparse,
so the cost of classification should be decreased to make the classification of wildlife on the edge a
viable approach. Traditional (Non-deep learning) techniques can potentially assist existing deep
learning models to improve their classification capabilities without adding much overhead in terms
of computational cost. In this section, we propose the use of two existing techniques of feature
extraction, namely local binary patterns and color histograms, in addition to the use of the back-
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Figure 4.8: Overview of experiments on alternative techniques for improving wildlife classification
on the edge

ground subtraction and bounding box generation mentioned in earlier sections in the Methodology,
as the alternative techniques to support wildlife classification on the edge. The model used in the
experiments to support this purpose is the ”GhostNet” model [26]. In the overview in Figure 4.8,
the four experiments run with the GhostNet model are shown.

The reason for choosing the GhostNet model is that we needed a model to adhere to the fol-
lowing requirements. The chosen model body and head should be easily separable; that is, the
model body will be used to extract features from the images, but we want to be able to add an
additional feature extractor to the model. The features extracted both by the original feature
extract and the additional one will be concatenated before passing through the fully connected
layer (i.e., the model head) which acts as the classifier for the image. An additional requirement is
that the model needs to be sufficiently small in terms of the number of parameters to be considered
an edge model. It should be possible to meaningfully compare to the Yolov5s model in terms of
model size and computational efficiency. The GhostNet model meets each of the requirements,
and consequently, is a logical choice for our purposes.

For running the experiments, we propose three different setups using the GhostNet model.
First, the unaltered GhostNet model; the implementation was taken from the Efficient-AI-Backbones
repository [36]. This unaltered version is used as a baseline for the GhostNet model and will be used
to compare the performance of training and classifying GhostNet on the regularly cropped/resized
images as well as the sequenced images. In the overview figure (Fig. 4.8) this is the first of three
model setups.

The second version of the GhostNet model adds a deep neural network to extract features
from the color histograms and local binary patterns. This neural network is trained alongside the
original body of GhostNet, as it is added to the internal architecture of GhostNet. The neural
network for extracting features from the color histograms and local binary patterns is a relatively
plain deep neural network. It has two main components, which consist of a series of two fully
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connected (FC) layers, two dropout layers to reduce overfitting during training, and two ReLU
activation functions. The first fully connected layer takes an input size of 804 and results in an
output of 120. The second FC layer takes an input tensor of size 120 and produces a dynamic
output size. The output from both the GhostNet feature extractor, as well as the Color Histogram
and local binary pattern feature extractor, are concatenated before they are passed to the fully
connected layer. The size of the final fully connected layer in GhostNet is adjusted to take into
account the concatenated results from the feature extractors.

The third version of the GhostNet model duplicates the GhostNet body in order to classify two
images at once. The two images used for input are the ’sequenced’ images which are cropped to the
bounding box of the animal based on background removal, and the regularly resized (’cropped’)
image. The intent of this model is to be able to use both the information available in the sequenced
as well as the cropped image. Similarly to the second GhostNet model, the final fully connected
layer is adjusted to be able to process the extracted features from both images.

The first version of the model is run twice, once with the cropped subset and once with the
sequenced subset. The second version is run once with the cropped subset and with local binary
patterns and color histograms of the images. The final version is run with both the sequenced and
the cropped images.

4.4 A novel approach: VAE-SVM model

In this section, we propose a method for the classification of wildlife animals in low-dimensional
imagery using a combination of a variational autoencoder (VAE) and a support vector machine
(SVM). The VAE is trained using a loss function based on the reconstruction loss and KL-
Divergence and the training images, and the SVM is trained on the latent space representation
of the images in addition to the labels of the images. This means that the training of the VAE
is unsupervised, but the training of the classifier (the SVM) is not. By using the latent space
representation of images processed by the encoder model, we compress features from the images
in N-dimensional space. Using the distance between points (i.e. between the encoded images) in
the latent space, the SVM then assigns them to a class. To better understand and visualize the
learned latent space, we use the t-SNE algorithm. This is a dimensionality reduction technique
that can plot the high-dimensional latent space onto a 2-dimensional or 3-dimensional plane. By
labeling the classes with distinct colors, we are able to distinguish between the classes and are able
to visualize the relationship between the different classes of animals in the learned latent space of
the VAE.

Given the low resolution of the images used in the model (64x64) compared to original source
images (up to approximately 3000x2000), certain classes will be difficult to classify given the lim-
ited information available in the 64x64 image. To address this issue, the aim is to let the VAE
model learn the properties of the camera trap locations so that it can effectively distinguish back-
ground from wildlife. The VAE model trained on the images learns to reconstruct the images
by encoding the images to a latent space and decoding the latent space representation back into
an image. Thereby, it learns to effectively compress the information present in the image in the
latent space representation, as the decoder model is only able to use the information present in
the latent space representation to reconstruct said image.

After the unsupervised training of the VAE model on the training images, the model is frozen
and saved. The images are then passed through only the encoder model and the resulting lat-
ent space representations are saved. These representations are analyzed with t-SNE and plotted
with the labels. Next, an SVM classifier is fit on the latent representations of the images along
with the labels. Finally, for each class, the class-wise accuracy, precision, recall, and F1 scores
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Figure 4.9: Overview of experiments using VAE-SVM

are calculated and recorded. For the SVM kernel, we have chosen to use an RBF kernel for the
classification, which is a widely used kernel shown to perform well in a variety of situations. Other
kernels may also show to be effective, and while informal experiments indicated slight performance
differences in varying the kernel, it was out of scope to optimize for the specific kernel. As with
the other models, we have avoided optimizing the models by means of hyper-parameter turning
or extensively experimenting with different model architectures of training setups in order to find
the model which performs best in our scenario.
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Experimental Setup

In the previous chapter, we described our research methodology, laying the foundation for our
experiments and approach. In this chapter, we dive deeper into the setup of the experiments. We
start by describing the selected datasets in Section 5.1, followed by describing the models to be
used in our experiments in Section 5.2.

5.1 Datasets

In this section, we describe the ENA24 [61] and Channel Islands datasets [18], which are the
datasets used in the experiments. We start by explaining the choice of datasets, followed by the
data cleansing and subset creation using the data pipeline.

In order to select a dataset that fits the needs of the research, a set of criteria was established
based on requirements from the problem statement as well as requirements are given the research
methodology. The following criteria are considered:

• Representability: The selected dataset should represent datasets that would be encountered
by wildlife researchers in real camera trapping (edge) scenarios, i.e., no significant prepro-
cessing has taken place.

• Reliability: The labels and annotations should be reliable and consistent.

• Availability: The dataset should be public and available to the general public and have
previously been subject to other research for a fair comparison.

• Label format: The labels should contain information about the class of the image (i.e. not
just ’empty’ or ’nonempty’), and in addition, contain information about the bounding box of
the animal(s) in the image. Bounding box information is a requirement for the Yolo models.
Only one bounding box per image is required even though there might be multiple animals
present.

• Size: The dataset should be sufficiently large in size to allow for training the models.

We chose to use datasets from the LILA BC (Labeled Information Library of Alexandria:
Biology and Conservation) data repository. This repository contains datasets related to biology
and conservation and has a proven track record in terms of research. For instance, a selection
of datasets from this repository has previously been used to train the MegaDetector model series
[11]. Many of the datasets found in this repository adhere to the criteria set previously, as they are
public and accessible, reliable, and consistently labeled using a proprietary ”Coco Camera Traps”
format [11] (described below).
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5.1.1 ENA24 dataset

The ENA24 dataset [61] is a dataset containing a selection of 23 classes from Eastern North Amer-
ica. The dataset contains 8789 publicly available images with annotations following the COCO
Camera Trap format [11], which is a metadata format very similar to that of the popular Common
Objects in Context dataset [39]. The COCO camera trap format contains metadata of the image
in JSON format including information about the sequence an image may belong to, the bounding
box in the image, the class label of an image, and possible annotations. The publicly available
ENA24 dataset contains no images of humans as they were removed for privacy reasons.

During the data cleansing, the human class labels were removed and the gap in the labels was
replaced with the label of the class with the highest index, as a gap in labels will cause issues
with the Yolo model training. No corrupted images or labels were found during data cleansing.
Following the previous steps, the data was split into subsets of varying sizes. These splits were
made using a stratified split on the classes, meaning the original distribution of classes was kept.
First, 20% of the training images were split into subsets as the test subset, this subsets is never
seen during training. Next, from the remaining images, 10% was set aside for validation purposes.
Finally, the remaining images were used for the training subsets. These subsets include 100, 50,
20, 10, and 5 percent of the total training images. Figure B.1 in the appendix shows the stratified
splits for each of the subsets and their classes. From an implementation perspective, the locations
of the images and the labels of each of the subsets were saved in the Pickle Python data format.
These Pickle files were then used in the data pipeline to generate the actual subsets based on a
variety of input dimensionality reduction parameters. As the set of images used for the validation
and test splits are defined at this step, all the transformations and processing steps that take
place in the data pipeline are also performed on the validation and test sets. In the rest of this
chapter, the created training subsets are described, but the validation and test sets undergo the
same pipeline transformations.

For the various experiments, we require datasets that undergo a variety of transformations to
change their input dimensionality, as well as to extract features such as local binary patterns and
color histograms. The final created training subsets for the ENA dataset are shown in Table 5.1.
The subsets were created using the parameters shown in the table header. The naming of the
subsets indicates the parameters chosen in the data pipeline as well as the training set sizes.

To distinguish between the set of subsets, vertical lines were added in Table 5.1. The first
set of subsets decreases the number of training images without changing the image dimensions
or compressing. They range from ENA640xCropRGBTrain100 to ENA640xCropRGBTrain5 and
contain 100-5% of the original set of training images. The second set of subsets introduces com-
pression and grayscale conversion. We first turn the images gray-scale, followed by grayscale with
wavelet compression, grayscale with naive compression, and finally grayscale, wavelet, and naive
compression. Lastly, the final set of subsets decreases the image resolutions. For the ENA24
dataset, the image dimensions were decreased from 640x640 down to 64x64.

The full original training dataset was 4.8 GB in size but was not actually used for train-
ing the models. This is because the images in the original were larger than 640x640, and we
decided 640x640 to be the maximum image size for the experiments. Therefore, in the res-
ults, the original training set is not shown and instead the results are compared between the
ENA640xCropGNTrain100 and the other subsets. The reason for including ENA224xCropGWNTrain20
(as opposed to Train100) was to compare the limits of image compression and dimensionality re-
duction on model performance in comparison to the full training set (ENA64xCropGNTrain100)
with smaller dimensions while having a similar final subset size (10.6MB and 8.0MB respectively).
For the smallest images of 64x64 pixels, wavelet compression was omitted as wavelet compression
introduces a black border as an artifact at the top and left sides of the images. As the images get
smaller, the proportion between the compressed image and the artifact increases, and for 64x64
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images the file size reduction was deemed too little in comparison to the compression artifacts. A
table showcasing the validation and test subsets can be found in the appendix in Table B.2.

Table 5.1: ENA24 subsets

Subset name Subset size Image dimensions Images Size per image (KB) Channels Compression

ENAORIGxRGBTrain100 4.8 GB* Original 6154 779.98 RGB (3) None
ENA640xCropRGBTrain100 909.3 MB 640x640 6154 147.76 RGB (3) None
ENA640xCropRGBTrain50 455.2 MB 640x640 3077 147.94 RGB (3) None
ENA640xCropRGBTrain20 181.6 MB 640x640 1230 147.64 RGB (3) None
ENA640xCropRGBTrain10 90.4 MB 640x640 615 146.99 RGB (3) None
ENA640xCropRGBTrain5 44.6 MB 640x640 307 145.28 RGB (3) None
ENA640xCropGTrain100 832.3 MB 640x640 6154 135.25 Grayscale (1) None
ENA640xCropGWTrain100 735.9 MB 640x640 6154 119.58 Grayscale (1) Wavelet Transform
ENA640xCropGNTrain100 362.4 MB 640x640 6154 58.89 Grayscale (1) Naive compression
ENA640xCropGWNTrain100 314.6 MB 640x640 6154 51.12 Grayscale (1) Wavelet & Naive
ENA224xCropGWNTrain100 53.4 MB 224x244 6154 8.68 Grayscale (1) Wavelet & Naive
ENA224xCropGWNTrain20 10.6 MB 224x244 1230 8.62 Grayscale (1) Wavelet & Naive
ENA64xCropGNTrain100 8.0 MB 64x64 6154 1.30 Grayscale (1) Naive compression

5.1.2 Channel Islands dataset

The full Channel Islands dataset [18] is roughly 87 GB on disk and contains roughly 240k images
with 6 classes, including an empty class. The images are taken from 73 camera trap locations in
the Channel Islands in California. Similar to the ENA24 dataset, images containing humans are
not publicly made available for privacy reasons. As the full dataset is quite large, only smaller
subsets were used for the experiments. For each of the experiments, only 5% of the data was used
for training. During the splitting of the data, images were set aside for validation and testing. As
the Channel Islands dataset is used in combination with the background subtraction technique
from Section 3, we were only interested in images taken in a sequence. Consequently, in the data
cleaning section, the metadata was filtered to only contain images that are part of a sequence of
three or more images. This means we disregarded all images which were not part of such a sequence.

In a similar fashion to the ENA24 dataset, subsets were created using a class-wise strati-
fied split, keeping the class distributions roughly the same. Since we are using a sequence of
images, stratification is a non-trivial task. For the channel islands dataset, class-wise stratific-
ation was performed by assigning a class label to each collection of images in a sequence, that
is, each sequence of images was assigned one label. The most common class was chosen, where
the non-empty class was ignored in the counts to prevent mislabeling sequences as fully empty.
In case only empty class labels are found, the collection of images was assigned to the empty
class. Using this set of sequences, a class-wise stratification can be performed. Since the dataset
only contains a few images with multiple classes throughout a single sequence (non-formal data
exploration), this stratification technique ensured the original class distribution is closely retained.

In Figure B.2 the stratified subset splits are shown. From these figures, it is clear that the
dataset is heavily skewed, Certain classes are much more common than others, this imbalance is
interesting to our research as it represents a realistic distribution of classes that could be found in
real-world applications. Additionally, since the dataset contains fewer classes than ENA24, and
also contains images taken in sequence, it makes the Channel Islands dataset a valuable dataset
for testing our custom models in varying contexts.

The channel islands training subsets are shown in Table 5.2. In a similar fashion to the ENA
subsets table, the header of the table indicates the parameters used in the dataset creation pipeline.
The channel islands datasets were primarily used in order to evaluate the influence of alternative
techniques to assist wildlife image classification such as the use of Local Binary Patterns, Color
Historagrams, and background subtraction. Therefore, the images in the subset were not com-
pressed or converted to grayscale, as the alterations are part of the ENA experiments. Only the
stratified ”Train5” subsets are used for training as described in the previous Section (5.1.2). The

30 Lightweight wildlife classification on the edge



CHAPTER 5. EXPERIMENTAL SETUP

validation and test subsets can be found in the appendix in Table B.1.

Table 5.2: Channel Island subsets

Subset name Subset size Image dimensions Images Avg. size (kb)

ISL224xCropRGBTrain5 143.8 MB 224x224 7126 20.180
ISL224xSeqRGBTrain5 129.4 MB 224x224 7126 18.159
ISL64xCropRGBTrain5 18.9 MB 64x64 7126 2.652
ISL64xSeqRGBTrain5 17.9 MB 64x64 7126 2.512

5.2 Models

5.2.1 Yolov5

The Yolov5 model is introduced in Background Section 3.3.1 and its use in the Methodology are
introduced in Section 4.3.1. In the Input Dimensionality Reduction section of Figure 4.2 shows
a basic diagram of the input dimensionality reduction experiments. First, we compare the per-
formance of Yolov5s and Yolov5l [28] on a mostly unaltered dataset. The only change from the
original dataset and the first dataset is that the images are resized to 640x640 which is the highest
resolution of images considered in the research. The Yolo models are trained on the subsets with
pre-trained weights as opposed to being trained from scratch, as this is suggested for small to
medium-sized datasets as ours by the authors. The experiments, which were run using Yolo fol-
lowed the subsets shown in Table 5.1 and Table 5.2. The initial experiments focus on reducing
the number of training images, followed by the effects of gray-scale conversion and compression,
and finally a combination of each of the reduction techniques. For the results, we only consider
the classification results; i.e., class-wise precision, recall, and F1 score.

Each Yolov5 experiment was run with a batch size of 16 running for 100 epochs. The exper-
iments were run by invoking the train.py script in the official Yolov5 repository from Ultralytics
on GitHub. The model with pre-trained weights from training on the COCO [39] was used. The
training was followed by evaluating the performance on the test sets. The model on the main
branch with commit hash ”7d46c6923592861aa123802c8860dfafc15d0fe1” was used for the exper-
iments. The experiments were run on a remote cluster with CUDA/11.3.1 on a shared GPU. For
the smallest of the data subsets, performance was also evaluated on a local machine to compare
inference speed with the VAE-SVM models on the same hardware.

5.2.2 GhostNet and its variants

The GhostNet [26] model experiments and its variants are shown in Figure 4.8. The Ghost-
Net model architecture was taken from the Efficient-AI-Backbones GitHub repository owned by
Huawei-Noah [1]. The experiments with single input images use the default GhostNet (PyT-
orch) architecture taken from the repository. The experiments with ”Dual GhostNet” altered the
GhostNet by taking images as their input, each image runs through its own model body. Before
passing to the fully connected layer which is adapted for the new tensor length, the tensors are
concatenated. The GhostNet-Hist-LBP model takes a similar approach but instead concatenates
the single image tensor and the resulting tensor from passing the color histogram and local binary
patterns through a DNN.

From trial runs, we observed that GhostNet converged rather quickly within 1-3 epochs. Each
of the final experiments was run for 10 epochs, where the models should have converged while no
significant overfitting was taking place. The PyTorch built-in Adam optimizer was used with a
learning rate of 0.02, with a batch size of 16. The GhostNet experiments were also run on the
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remote cluster with CUDA/11.3.1 on a shared GPU.

5.2.3 VAE-SVM model

The diagram in Figure 4.9 from the Methodology (Chapter 4) shows the VAE-SVM model and
experimental architecture. Experiments run with the VAE-SVM consist of two training phases,
first to train the VAE model, and next to train the SVM classifier. For the VAE model, a ”plain”
VAE architecture was used. The implementation for the default VAE found on the PyTorch-VAE
GitHub repository [4] was used. For the implementation of the SVM, the default implementation
from SciKit-learn [50] was used with the built-in RBF kernel.

The VAE model is trained on the remote cluster with CUDA/11.3.1 on a shared GPU. Since
no labels were used at this step, this is unsupervised training. The VAE model was trained for 200
epochs. No hyperparameter tuning was performed aside from a small number of initial trial runs
for which the purpose was to obtain a working model. The chosen learning rate is 0.005 without
any weight decay, and the Kld weight is set to 0.00025. The SVM model was fit on a local device.
After training the VAE model to convergence, images were passed through the encoder and stored.
Using the image encodings and their labels, the SVM was trained on the encoded data. The de-
fault parameters were used for the SVM kernel, meaning C = 1 and γ = 1/(n features∗X.var()).

5.2.4 Comparison of experimental results

Before we address the results in the Chapter which follows, it is important to consider that the
Yolov5 model is a classifier model which also detects object boundaries, and the other models used
are purely classification models. As an object detection model, Yolov5 is designed to locate the
objects in an image, as well as classify those objects, whereas the classification models are only
trained to classify the object found in the image. In particular, when multiple objects are present
in an image, comparing the performance of the classification model and object detection model
is not as straightforward. The object detection model may detect and classify the wrong animal
when two different animals are present, or the classification model might be able to predict accur-
ately. However, images with two species are uncommon in the datasets used. For images that are
very small in dimensions (e.g. 64x64), detecting objects in these images can be difficult- especially
when the objects are small. This should be considered during the comparison of the Yolo models
and the other models. That being said, addressing the shortcoming of existing models such as
Yolov5 is precisely one of the aims of the experiments in this research. Results are compared using
(average and weighed) F1 scores, precision, and recall regardless of the model used. The accuracy
of the generated bounding box is not taken into consideration for the results.

32 Lightweight wildlife classification on the edge



Chapter 6

Results

In this chapter, we present the findings of our experiments aiming to improve the viability of
the classification of wildlife on the edge. In the previous chapters, we have split the experiments
into experiments that look at the influence of dimensionality reduction of the wildlife imagery on
existing models, followed by alternative techniques which can support the classification of wildlife
on the edge, and finally, a model which is able to deal with the constrained input images. This
chapter will follow the same structure for presenting the results. Concretely, this means the follow-
ing: first, the results of the experiments with the benchmark model yolov5 are presented. These
results showcase the influence of input dimensionality reduction on the performance of the model.
Next, we present our findings with the GhostNet model and its variants, experimenting with al-
ternative methods to improve wildlife image classification on the edge. This includes background
removal and bounding box generation using a sequence of images and using local binary patterns
and color histograms as additional features. Finally, the performance of the VAE-SVM models
is analyzed, which is the lightweight model able to cope better with the highly constrained input
images. All of the results shown are on the test sets of the respective datasets. For all results on a
class-wise level for both datasets, please refer to the appendix for the results, found in Appendix A.

6.1 Input Dimensionality Reduction

Table 6.1: Model sizes in terms of trainable parameters

Model Trainable parameters

Yolov5l 46.5M
Yolov5s 7.2M
GhostNet 3.9M
GhostNet-Hist-LBP 4.0M
Dual GhostNet 7.8M
VAE-SVM-4M 4M*
VAE-SVM-665k 665K*

*Combined encoder & decoder weights.

In this section, we present the results of the input dimensionality reduction experiments. Table
6.1 shows the model sizes in terms of trainable parameters. The Yolov5s, GhostNet model, and
VAE-SVM-4M model are quite similar in terms of the number of trainable parameters, and con-
sequently, it is fair to compare their performance in an edge setting. The trainable parameters
for the VAE models include the parameters for the SVM encoder and decoder. After training,
inference can be performed using just the encoder which results in 50% fewer parameters, or 2M
parameters and 344k parameters for the VAE-SVM-4M and VAE-SVM-665k models respectively.
The VAE-SVM model parameters do not include the weights (coefficients) of the SVM, which
are used to construct the decision boundary. The SVM weights account for ≤ 5k parameters in
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practice.

Table 6.2: Summary of experimental results for input dimensionality reduction with ENA24 train-
ing data.

Model Subset name Subset size Precision Recall F1

Yolov5s ENA640xCropRGBTrain100 909.3 MB 90.24% 92.64% 0.913
Yolov5s ENA640xCropRGBTrain50 455.2 MB 86.96% 89.10% 0.879
Yolov5s ENA640xCropRGBTrain20 181.6 MB 84.85% 79.61% 0.819
Yolov5s ENA640xCropRGBTrain10 90.4 MB 75.55% 70.12% 0.718
Yolov5s ENA640xCropRGBTrain5 44.6 MB 66.67% 60.72% 0.629
Yolov5s ENA640xCropGTrain100 832.3 MB 90.55% 91.97% 0.912
Yolov5s ENA640xCropGWTrain100 735.9 MB 89.81% 92.97% 0.912
Yolov5s ENA640xCropGNTrain100 362.4 MB 90.90% 91.31% 0.910
Yolov5s ENA640xCropGWNTrain100 314.6 MB 89.51% 93.03% 0.911
Yolov5s ENA224xCropGWNTrain100 53.4 MB 89.99% 86.48% 0.881
Yolov5s ENA224xCropGWNTrain20 10.6 MB 78.69% 71.36% 0.745
Yolov5s ENA64xCropGNTrain100 8.0 MB 65.06% 49.94% 0.540
VAE-SVM-665k ENA64xCropGNTrain100 8.0 MB 67.38% 63.69% 0.634

Table 6.2 is a collection of the weighed precision, recall, and F1 performances of the experi-
ments run on the ENA24 dataset [61] relating to input dimensionality reduction. In this table,
we did not include the comparison between the large and small Yolov5 models. This comparison
between the Yolov5s and Yolov5l model can be found in the Appendix Table A.1. In section 5.1
we introduced the created ENA subsets while explaining the data pipeline steps and their naming
(Table 5.1). Each row represents an experiment run on one of the ENA24 subsets. The full results
which include the class-wise scores are shown in the Appendix Tables A.2 and A.3 for the first five
rows, rows four through eight are found in Appendix Tables A.4 and A.5, and rows nine through
eleven can be found in Appendix Table A.6. The final row shows our novel VAE-SVM model
approach and its performance on the smallest created subset, of which the class-wise results are
found in Appendix Table A.7.

6.1.1 Reducing the number of training images

The first five rows in Table 6.2 show the results of reducing the number of available training
images in the training set. A visual representation of experiments is shown in Figure 6.1. The
total number of training images was reduced from 6154 to 307 total images. It is not surprising
that decreasing the number of training images will decrease the weighted precision, recall, and
F1 scores. This decrease in performance is expected as the model is trained on fewer samples.
Classes with fewer initial samples are affected more by the reduced number of training images,
which is an expected result. We observe this in the heatmap Figure 6.1 by taking a look at the
support of a class (indicated by the number in the parentheses) and the decrease in F1 score with
fewer input images. In this Figure, we see that certain classes were more affected by the reduction
than others. For instance, the F1 score of the Bobcat class was reduced to 0.28 from 0.92, while
the Eastern Chipmunk class had fewer training samples but was only reduced to an F1 score of
0.54 from 0.93. To emphasize the most important (and expected) finding, fewer training images
results in reduced model performance, especially for classes with lower support in the training data.

6.1.2 Effects of gray-scale and compression

In addition to reducing the number of training images, we also experimented with compression and
gray-scale conversion. Rows four through eight (i.e., the second division) in Table 6.2 corresponds
with what is shown in Figure 6.2. They show the effect of reducing the input dimensions by means
of compression and gray-scale conversion. Taking a closer look at the subset sizes when saved on
disk as seen from the Experimental Setup Table 5.1, an almost 3 times reduction can be achieved
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Figure 6.1: Influence of decreasing the number of training samples on performance
Yolov5s model, weighed classwise F1 score on the uncompressed ENA dataset in RGB. Support is indicated
between the parenthesis for each class

without much loss of precision, recall, or F1 score. For example, looking at the Results Table
(6.2), the F1 scores of training Yolov5s with the ENA640xCropGWNTrain100 subset, i.e., images
of size 640x640 in gray-scale and compressed with ”naive” and wavelet compression, as compared
to the non-compressed subset in RGB, reduces the subset size from 909.3MB on disk down to
314.6MB on disk. However, the F1 score is mostly unchanged from 0.912 to 0.911. Compared to
the original source images (i.e., with a resolution larger than 640x640, see Table 5.1), a more than
15 times reduction in the storage on disk is achieved. The fact that there is little effect on the
classification capabilities of the model trained using the smallest subset amongst the compressed
and gray-scale subsets is an exciting result, especially considering the edge computing domain.

Figure 6.2: Influence of color channels and compression on the performance of the yolov5s model
(ENA dataset)
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6.1.3 Reduced image resolution and novel approach

This subsection described the results of reducing the image resolutions on the ENA24 data-
set. It will first discuss results on the Yolov5s model, and later introduce results from our
novel VAE-SVM-665k approach. The final four rows of Table 6.2 reduce the image dimen-
sions in terms of image size, in addition to reducing the number of training samples for the
ENA224xCropGWNTrain20 subset. The ENA224xCropGWNTrain20 subset is an interesting
comparison to ENA64xCropGNTrain100 as they are similar in size on disk while being differ-
ent in terms of dimensionality reduction. As is especially visible in the heatmap in Figure 6.4, the
influence of reducing the image resolution is quite significant on the model performance. If we are
only interested in the total training subset size on disk, the ENA224xCropGWNTrain20 training
subset seems to be most promising in terms of model performance at an F1 score of 0.881 with
only 53.4MB stored on disk (compared to 4.8GB (!!) of the original full-resolution training set).
The Yolov5s model struggles with the subsets with images of 64x64 resolution. At the point of
64x64 images, the amount of information left in the resized images is very little compared to the
original images. Smaller animals, for instance, rodents, are especially difficult to classify in this
setting. An example of the size of these images was shown in Figure 6.3.

Figure 6.3: Image processed with different settings using the data pipeline. The 224x224 images
showcase the difference between using the sequencing trick to detect and crop aroud an animal,
and letterboxing the original image. The 64x64 image shows the size of the smallest images used
the experiments

It is unexpected to see that Yolov5s performs as poorly in the 64x64 gray-scale image setting.
The final two rows of Table 6.2 allow us to compare the performance of Yolov5s with our novel
approach, VAE-SVM-665k. In the Table 6.3, we can closely compare the VAE-SVM-665k and
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Figure 6.4: Influence of input dimensionality reduction on the performance of the yolov5s model
(ENA dataset)

Yolov5s on a class-wise level. Excitingly, the VAE model is able to perform better in the overall
(weighed and average) scores, and the VAE model scores significantly better on many of the rodent
classes. The two rodent classes Eastern Gray Squirrel (1) and Eastern Chipmunk (2) have an F1
score of 0.775 and 0.926, respectively for the VAE model, whereas Yolov5s scores 0.000 for both.
For the rodent class, Eastern Fox Squirrel (12) these values are 0.698 and 0.451 for the VAE and
Yolov5s model. This demonstrates the superiority of the VAE model for the classes, which are
small in size in the original images, and thus increasingly difficult to classify in the smaller images.
This is likely due to the fact that the VAE model is able to better learn representations of the
camera trap locations and the animals in the images needed to accurately classify the animals. It
is worth noting that the Yolov5 model outperforms the classes, which are not well represented in
the training subset. For instance, the VAE model has an F1 score of 0 for horses (a class that
is not well represented in the dataset), whereas the Yolo5s model performs quite well with an F1
score of 0.831.

In summary, these results show that reducing the number of training images, the image sizes,
and the other image dimensions through compression and gray-scale conversion can have a sig-
nificant impact on the performance of the Yolov5 model on the ENA24 dataset. Unexpectedly,
decreasing the number of training images does reduce the performance of Yolov5s, but interest-
ingly certain classes are more affected by this than others. Most promisingly, the results show that
compression and gray-scale conversion can be valuable techniques to reduce the required storage
of wildlife data on disk, without significantly impacting performance. A significant reduction in
the size of the training images on disk can be achieved while maintaining a high level of perform-
ance, up to 2.8 times from the largest images the model is trained with, and a reduction of up
to 15 times as compared to the original source images. This is especially interesting for the edge
computing domain, where the computational resources are limited and the amount of data that
can be stored on the device is limited. The performance of Yolov5s was drastically impacted by
reducing the image resolutions to 64x64, and promisingly, the novel VAE-SVM approach was able
to achieve better results. This is true in particular for small animals such as rodents. On the other
hand, Yolov5s performed better in classes that are not well represented in the dataset. Given that
VAE-SVM-665k is more than 10 times smaller than Yolov5s in terms of trainable parameters, and
more than 20 times smaller during inference time (since only the encoder is used during infer-
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Table 6.3: Performance of VAE-SVM-665k versus Yolov5s on ENA64xCrop subset

VAE-SVM-665K Yolov5s

Class support precision recall f1-score precision recall f1-score

All - Average 1757 65.36% 55.41% 0.581 64.67% 44.34% 0.497
All - Weighed 1757 67.38% 63.69% 0.634 65.06% 49.94% 0.540
Bird (0) 40 75.00% 52.50% 0.618 70.20% 25.00% 0.369
Eastern Gray Squirrel (1) 60 97.37% 61.67% 0.755 0.00% 0.00% 0.000
Eastern Chipmunk (2) 62 94.92% 90.32% 0.926 0.00% 0.00% 0.000
Woodchuck (3) 41 100.00% 60.98% 0.758 56.40% 37.90% 0.453
Wild Turkey (4) 58 80.95% 29.31% 0.430 42.70% 34.50% 0.382
White Tailed Deer (5) 68 47.00% 69.12% 0.560 80.20% 83.80% 0.820
Virginia Opossum (6) 145 86.59% 97.93% 0.919 80.10% 83.40% 0.817
Eastern Cottontail (7) 57 41.67% 17.54% 0.247 38.40% 5.49% 0.096
American Black Bear (8) 179 41.02% 76.54% 0.534 81.20% 76.50% 0.788
Vehicle (9) 28 48.15% 46.43% 0.473 90.70% 46.40% 0.614
Striped Skunk (10) 59 48.08% 42.37% 0.450 58.30% 40.20% 0.476
Red Fox (11) 83 44.19% 45.78% 0.450 52.20% 46.00% 0.489
Eastern Fox Squirrel (12) 68 73.77% 66.18% 0.698 58.10% 36.80% 0.451
Northern Raccoon (13) 58 82.76% 41.38% 0.552 58.60% 31.00% 0.405
Grey Fox (14) 84 76.19% 57.14% 0.653 51.30% 40.20% 0.451
Horse (15) 12 0.00% 0.00% 0.000 93.10% 75.00% 0.831
Dog (16) 140 82.20% 69.29% 0.752 76.50% 62.90% 0.690
American Crow (17) 184 67.39% 84.24% 0.749 59.50% 61.40% 0.604
Chicken (18) 104 85.86% 81.73% 0.837 60.70% 43.30% 0.505
Domestic Cat (19) 96 54.79% 41.67% 0.473 52.60% 37.50% 0.438
Coyote (20) 66 82.93% 51.52% 0.636 91.30% 79.10% 0.848
Bobcat (21) 65 27.06% 35.38% 0.307 70.60% 29.20% 0.413

ence), these results are particularly noteworthy. Overall, these findings are promising for efforts
to improve the feasibility of classification on the edge in the wildlife domain.

6.2 Performance evaluation of GhostNet and its variants

In the previous section, we have shown the impact of dimensionality reduction on the performance
of the Yolov5s model as well as the performance of the VAE-SVM in comparison to Yolov5s. In this
section, we will explore the alternative techniques to improve the performance of the classification
on the edge using the GhostNet model and its variants and using Yolov5s as a benchmark. The
previous experiments were run on the ENA24 dataset[61], and the experiments discussed in this
section are run on the Channel Islands dataset [18]. The reason for this is that the Channel Islands
dataset contains images taken in sequence. These images taken in sequence can be pre-processed
with the ’sequencing’ trick described in the Methodology Section 4.2. Table 6.4 is a collection of
results from classifying images from the channel islands dataset [18] cropped to 224x224 dimen-
sions in RGB. The first four rows showcase the GhostNet experiments. The full results with the
class-wise performance of these experiments can be found in Table 6.5. The full class-wise results
of the other Channel Islands dataset experiments can be found in Appendix Tables A.8 and A.9.

Table 6.4: Summary of experimental results of GhostNet experiments with Channel Islands train-
ing data.

Model Subset name Precision Recall F1

Dual GhostNet ISL224xCrop/SeqRGBTrain5 70.62% 69.18% 0.687
GhostNet ISL224xSeqRGBTrain5 74.37% 72.98% 0.732
GhostNet ISL224xCropRGBTrain5 69.67% 68.36% 0.659
GhostNet-Hist-LBP ISL224xCropRGBTrain5 68.56% 68.99% 0.684
Yolov5s ISL224xCropRGBTrain5 43.69% 48.62% 0.432
Yolov5s ISL224xSeqRGBTrain5 81.43% 81.88% 0.810

Table 6.5 shows the class-wise performance of the various GhostNet experiments in isolation.
A common theme in all class-wise results (also seen in Appendix Tables A.8 and A.9) is that the
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classes ”Skunk”, ”Bird” and ”Other” perform poorly compared to the rest. This can be explained
by the fact that the number of images in the dataset for these classes is quite low. Comparing the
GhostNet experiments, surprisingly, the unaltered GhostNet model outperforms both the Dual
GhostNet and the Color Histogram + Local Binary Patterns GhostNet variant. The Dual Ghost-
Net combines the input of the ’sequenced’ and regularly cropped images. For the Color Histogram
and the Local Binary Pattern approach it means that the model is either not able to effectively
learn a relationship between the extracted features and the classes, or that the color histogram
and local binary pattern features are not providing the model with new information with which
classification can be improved. In terms of the Dual GhostNet approach, it is strange that the
performance is poorer than the model which only takes in the cropped or sequenced images. This
could be explained by a model architecture that does not perform well with the dual input ap-
proach, or that the information gained by using both of the images as input is not significant
enough to yield better results.

Most interestingly, the models perform significantly better on the sequenced images than on
the cropped images. In the case of the benchmark model Yolov5s, this result is especially visible.
In the summary Table 6.4, using the sequenced images for training and testing yielded an increase
from 0.432 to 0.810 in F1 score. Furthermore, Appendix Table A.8 shows that Yolov5s was not able
to classify any rodents in the cropped subset, but reached an F1 score of 0.838 for the rodent class
in the sequenced subset. This indicates that preprocessing images taken in sequence to generate
bounding boxes provide valuable information to models with relatively low input resolution (in
this case 224x224). This seems to be especially true for Yolov5s which is a two-stage model, first
detecting an object and classifying afterward. Further improvements and applications of applying
the sequence trick in the context of models with low input resolutions could yield even better
results and improve the robustness of wildlife classification on the edge when applied correctly.

Table 6.5: Performance of GhostNet variants trained on ISL224xCropTrain5 and ISL224xSeqTrain5 data

Dual ghostnet: crop. & seq. GhostNet: Crop. GhostNet: Seq. GhostNet: Crop., Seq., CHist., LBP

Class support Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

All - Weighed 8593 70.62% 69.18% 0.687 69.67% 68.36% 0.659 74.37% 72.98% 0.732 68.56% 68.99% 0.684
Empty (0) 3981 89.15% 69.41% 0.781 78.72% 75.76% 0.772 77.32% 82.65% 0.799 75.61% 85.10% 0.801
Other (1) 2 0.00% 0.00% 0.000 0.00% 0.00% 0.000 0.00% 0.00% 0.000 0.00% 0.00% 0.000
Fox (2) 1831 48.55% 75.34% 0.591 24.58% 68.18% 0.361 60.29% 68.83% 0.643 66.96% 49.36% 0.568
Skunk (3) 24 0.00% 0.00% 0.000 0.00% 0.00% 0.000 0.00% 0.00% 0.000 0.00% 0.00% 0.000
Rodent (4) 2544 64.07% 70.84% 0.673 94.46% 63.29% 0.758 86.83% 67.64% 0.760 65.06% 64.32% 0.647
Bird (5) 212 0.00% 0.00% 0.000 0.00% 0.00% 0.000 0.00% 0.00% 0.000 0.00% 0.00% 0.000

6.3 Deeper performance evaluation of VAE-SVM

This section delves deeper into the performance evaluation of the novel VAE-SVM model approach.
We discuss the reduction of the VAE-SVM model size by reducing size of the internal layers. This
is followed by more comparison to our Yolov5 benchmark model in terms of performance and
inference speed, and lastly, visualizations and analysis of the VAE latent space using t-SNE.

6.3.1 VAE-SVM-665k versus VAE-SVM-4M

We had originally intended to compare VAE-SVM-4M with models of similar sizes, such as Yolov5s
(7.2M) and GhostNet (3.9M) (see Table 6.1). However, in a later stage of the research, it became
clear that it was possible to further reduce the size of the VAE architecture by reducing the
number- and breadth of the internal layers. This did not impact the performance of the VAE-
SVM models significantly, as can be seen in Appendix Tables A.7 and A.9. From the research
objectives perspective, it is highly beneficial for the edge domain to reduce the number of para-
meters without a significant impact on the performance. As many of the experiments were already
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Figure 6.5: VAE-SVM outperforms Yolov5s on the 64x64 subsets while having fewer trainable
parameters

run at this point in the research, a combination of VAE-SVM-665k and VAE-SVM-4M results have
been shown. However, most experiments were run twice, once with VAE-SVM-4M and once with
VAE-SVM-665k. The SVM is identical in both the VAE-SVM-4M and VAE-SVM-665k.

6.3.2 VAE-SVM-665k outperforms Yolov5s

We have previously seen that the VAE-SVM-665k model outperforms Yolov5s on the ENA24 data-
set using the most constrained input data, ENA64xCropGNTrain100 (Table 6.2). In Table 6.6 we
see that in addition to outperforming Yolov5s on the constrained ENA24 subset, the VAE-SVM
approach is also outperforming Yolov5s on the Channel Islands 64x64 subset. In Figure 6.5 we
visualize these results and highlight the performance of the VAE-SVM models and Yolov5s in
comparison to the number of trainable parameters.

Interestingly, Yolov5s performs better on the ”sequenced” subset than the cropped subset, but
this is not the case for the VAE-SVM model. This suggests that Yolov5s could have trouble finding
an appropriate bounding box in the 64x64 models, which is in agreement with previous research:
in the study of Leorna et al. [37], they describe that the minimum detection limit for an animal
is around 60 pixels using MegaDetector, which also takes a two-stage approach of detecting and
classifying. Applying the sequencing trick to images could bypass this minimum detection limit
as the objects in the image remain much larger, which results in improved performance.

Comparing both results from the 64x64 ENA24 subset (Table 6.2) and Channel Islands subset
(Table 6.6), the performance difference between the VAE-SVM-665k and Yolov5s models on the
ENA dataset is less than on the Channel Islands dataset. This can be attributed in part to the
fact that Yolov5s performs quite poorly on small animal classes such as rodents, whereas VAE-
SVM-665k has less difficulty with these classes. The fraction of rodents in the Channel Islands
dataset is much higher in the Channel Islands dataset than in the ENA dataset.

6.3.3 Yolov5s and VAE-SVM-665k inference speed

Table 6.7 compares the inference speed per image of Yolov5s and VAE-SVM-665k. The results are
from running experiments on a local machine, running on CUDA (NVIDIA GTX 1070) and an
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Table 6.6: Summary of experimental results of Yolov5s and VAE-SVM on the 64x64 Channel
Islands subset

Model Subset name Precision Recall F1

VAE-SVM-4M ISL64xCropRGBTrain5 78.64% 79.91% 0.789
VAE-SVM-4M ISL64xSeqRGBTrain5 71.04% 71.58% 0.702
VAE-SVM-665k ISL64xCropRGBTrain5 77.42% 79.01% 0.779
Yolov5s ISL64xCropRGBTrain5 37.01% 44.61% 0.405
Yolov5s ISL64xSeqRGBTrain5 44.79% 62.27% 0.521

AMD Ryzen 7 1700x. Both of the models were tested on RGB images from the Channel Islands
dataset, in a batch of 32 (i.e. input tensors of 32x3x64x64). For the VAE-SVM-665k model, the
majority (≥99%) can be attributed to the classification of the latent representations of the images
using the SVM, whereas the encoding of the images took only 0.003 milliseconds per image. It is
also worth noting that the Yolov5s model’s inference speed does not include the time required for
Non-Max Suppression (NMS), which can add an additional 1.4-1.7ms per image. This is left out
as we are comparing classification results, and NMS is related to selecting the most appropriate
bounding box. These results suggest that the VAE-SVM-665k may be more efficient in resource-
constrained environments such as wildlife classification on the edge.

Table 6.7: Comparing inference speed between Yolov5s and VAE-SVM-655k

Model Trainable Parameters Inference speed

Yolov5s 7.2M 0.5ms-0.8ms*
VAE-SVM-665k 665K 0.3ms

* This excludes Non Max Suppresion (NMS) time of 1.4-1.7ms per image

6.3.4 Comparing latent space representations

By using the t-SNE algorithm, we can project the latent space embeddings of images after passing
them through the encoder model as part of the VAE. Figures 6.8, 6.6 and 6.7 show these embed-
dings. The colors represent the different classes. The projection of the ENA24 dataset suggests
that the encoder is able to generate embeddings, which are somewhat separable but not entirely.
This is reflected in the classification results: The SVM was not fully capable of finding feasible
separation boundaries in the latent space. For the Channel Islands subsets, it seems from visual
inspection, that the embeddings of the sequenced channel island images are less separable than
the cropped images. Unsurprisingly, Table 6.6 reflects this in the F1 scores, as the VAE-SVM F1
score on the cropped subset is higher than that of the sequenced subset.
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Figure 6.6: 2d projection of the Channel Is-
lands test set (Cropped) embeddings using
t-SNE (VAE-SVM-4M)

Figure 6.7: 2d projection of the Channel Is-
lands test set (Sequenced) embeddings using
t-SNE (VAE-SVM-4M)

Figure 6.8: 2d projection of the ENA 64x64 test set embeddings using t-SNE (VAE-SVM-4M)



Chapter 7

Conclusion and Future Work

We set out to answer the question which AI model and data design choices can enable edge-based
wildlife image classification. To reiterate the reasoning behind choosing this research question,
our goal is to increase the viability of wildlife classification on the edge. We attempt to do so
by addressing the research questions which address gaps both in domain research, as well aid in
bringing the classification of wildlife on the edge to practice. In this chapter, we highlight what
we have achieved, how our results can aid to answer these research questions, and what we can
conclude about the research.

Encapsulating the first sub-question Which design choices in reducing input image dimension-
ality can enable edge-based animal monitoring using AI on the edge?, we started by investigating
the impact of reducing the dimensions of deep learning models for animal classification on the
edge during training and inference time. These experiments were run on the ENA24 dataset and
used Yolov5s as a benchmark model. First, the number of training images was reduced, followed
by gray-scale conversion and compression of the images, and lastly reducing the image resolutions
from 640x640 down to 64x64. Unsurprisingly, reducing the number of training images results in
a decrease in F1 score, precision, and recall. Classes with less initial support suffered more from
the reduction in training images than other classes. Most promisingly, we have shown that the
storage required for training images can be significantly reduced. The extent of this is that there
is no significant impact on the performance while reducing the size of the images on disk by three
times compared to their unaltered 640x640 versions, and up to 15 times compared to the images
in original resolution. This reduction is pushed to a nearly 90 times reduction (53.4MB compared
to 4.8GB) by combining gray-scale conversion, compression, and image resolution reduction, at
which point the F1 score suffers a decrease from 0.913 to 0.881. The significant reduction in storage
requirements for camera trap images can prove to be a significant factor in increasing the viability
of animal monitoring on the edge. Increasing the capacity of storing or transmitting images used
for training models in edge scenarios is key, where such resources are scarce. In conclusion to
our first research question, by applying a combination of gray-scale conversion, compression, and
resolution reduction techniques, wildlife classification on the edge can be made more feasible.

Our second sub-question reads How can we design wildlife classification edge models tailored
for reduced input image dimensions?. With images heavily reduced in dimensions, we have set out
to design a model capable of dealing with these constrained inputs more robustly than our bench-
mark model, Yolov5s. The proposed model is a combination of the Variational Autoencoder (VAE)
and a Support-Vector-Machine (SVM). The VAE is trained (unsupervised) on training data, after
which the SVM is trained to classify images that are encoded in the latent space of the VAE. This
approach has proved surprisingly effective; for both the ENA24 dataset and the Channel Islands
dataset experiments, the VAE outperformed the Yolov5s model on the most constrained subsets.
These most constrained subsets contain images reduced to resolutions of 64x64, and in the case of
ENA24, compressed and converted gray-scale. Both models perform quite poorly, but VAE shows
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significant improvements. In particular, images with small animals were mostly not able to be
classified to any extent by Yolov5 at the 64x64 resolution, but the VAE-SVM approach was able
to classify these images surprisingly well in both the ENA24 and Channel Islands datasets. The
VAE-SVM approach did struggle with classes that are not well represented in the training data.
Comparing the size of Yolov5s with 7.2M trainable parameters, and VAE-SVM-665k with 665k
trainable parameters, the VAE-SVM model is able to outperform the benchmark model with signi-
ficantly fewer parameters. Yolov5s has an F1 score of 0.521 on the 64x64 Channel Islands dataset
which made use of the sequencing trick, and the VAE-SVM-665k model showed an accuracy of
0.789 on the non-sequenced images. For the ENA24 dataset, Yolov5s achieved an F1 score of 0.540,
while the VAE-SVM-665k model outperformed it with an F1 score of 0.634. Consequently, we an-
swer this sub-question by proposing the VAE-SVM model design tailored for wildlife classification
on the edge given constrained input data. With further research and refinement, the VAE-SVM
model architecture approach could prove to be a valuable tool in wildlife classification on the edge.

Addressing the third research sub-question, To what extent can alternative and non-traditional
imaging techniques increase the classification results of the edge models?, two types of alternative
approaches are considered throughout the experiments. First, the two a-priori descriptors, color
histograms, and local binary patterns. We experiment with extracting the color histograms and
local binary patterns as features from the wildlife imagery during the date pipeline step. The
reasoning behind using the combination of the color and texture descriptor is that they could
prove to be a computationally efficient manner of extracting features from (full resolution) im-
ages, which can aid lightweight models coping with the reduced resolution of the input images.
However, the results of the GhostNet variant utilizing the color histogram and local binary pat-
terns as additional inputs did not yield any improvements over the GhostNet variant classifying
on just the image. The reason for this is ambiguous, but we can hypothesize about two angles;
first the color histograms and local binary did not yield valuable new information to the model.
From the color histogram perspective, this would be in line with previous research suggesting
that night- and daytime camera imagery (i.e., the availability of color) barely influences wildlife
classification performance [52]. On the other hand, our model architecture or implementation
could be lacking. While the results of the Color Histograms and Local Binary Patterns were not
particularly interesting, the second alternative approach showed more promise. It works by taking
a sequence of captured images, removing the background, and cropping around the object which
remains. Hereby, we can crop around an animal that moves through the frame. The reasoning
behind choosing this technique is that in images with very low resolution, small animals such as
rodents are sized down to a few pixels making them hard to classify. By preemptively applying
this sequencing trick to full-resolution images, we have been able to improve the performance of
our models in certain cases. In particular, the performance of the Yolo models was increased signi-
ficantly by applying the sequencing trick. In the 224x224 Channel Islands subset, the F1 score of
Yolov5s on the images resized using letterboxing was 0.432, and the F1 score of the Yolov5s model
on the images with the sequencing trick applied was close to double at 0.810. For the 64x64 images
of the same Channel Islands dataset, the difference was less pronounced, jumping from an F1 score
of 0.405 for the regular images, to 0.521 for the images with the sequencing trick. Surprisingly, the
VAE-SVM model seems to perform better with the non-sequenced images. We believe that these
results can be explained by that Yolov5s is able to better find and classify objects in sequenced
images. These results suggest that alternative and non-traditional imaging techniques have their
place in wildlife classification models on the edge, in particular when a technique is suited for a
specific scenario or setting.

In conclusion, we have shown that application of a variety of input dimensionality reduction
techniques can significantly reduce the amount of training data required without significantly sac-
rificing model performance. Second, we have proposed a VAE-SVM model design as a tailored ap-
proach for dealing with constrained inputs in the wildlife classification domain which outperforms
existing models in low-resolution imagery, while using fewer model parameters. Furthermore, our
experiments on non-traditional and alternative techniques for wildlife classification on the edge
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suggest that there lies potential in the practical use of techniques such as the sequencing trick.
Ultimately, these findings contribute to the development and feasibility of wildlife classification on
the edge.

7.1 Future research

In this section, we address potential future research opportunities.

Previous research indicated that wildlife images taken at nighttime did not influence wildlife
classification performance [52]. Our research further builds upon this by showing that images can
be compressed, reduced in size, and turned gray-scale to significantly reduce storage requirements
while retaining the performance of models trained and evaluated using these images. Future re-
search can build upon this, for example through the use of different compression techniques or
color spaces, and by developing models and exploring applications that benefit most from these
optimized image representations.

The VAE-SVM model has only been applied to the most constricted datasets. There exist
opportunities to explore the VAE-SVM model outside of the context of the constrained input im-
age and the edge, as well as outside of the wildlife domain. One approach we see as applicable is
using a chunking approach. By analyzing a high-resolution image chunk-by-chunk, the VAE-SVM
model can classify each of these lower-resolution chunks separately. It might be required to train
a VAE for each of the chunks, but this is possible given that the VAE model can be trained using
unsupervised learning. The SVM classifier would only have to be trained with a small number of
labeled images, and one could feasibly apply an active learning approach to reduce the number of
required labels for training. Other opportunities exist for applying the VAE-SVM approach, and
we suggest exploring its potential in both practical and research settings.

In a setting such as Wildlife classification, it is valuable to perform research in collaboration
with domain experts. After our preliminary results were ready, we had the opportunity to discuss
the results with Dan Morris, who we previously introduced as the researcher involved with various
camera trapping projects such as MegaDetector [11]. From his perspective, the sequencing trick
could be particularly useful in certain scenarios where small animals cannot be detected by object
detection. More concretely, the MegaDetector model performs well in detecting large animals in
various settings but can have difficulty detecting smaller animals, such as rodents, passing by the
camera trap at high speeds. In our results, we have shown that applying the sequencing trick to
images allows for the detection of animals that object detection models had difficulty finding, and
as such can be explored to aid in the scenario mentioned. Furthermore, the sequencing trick could
be applied as an early filter for removing ghost images. In an informal experimental setting, the
images for which a bounding box around the animal was not found using the sequencing trick,
and a large portion of the images for which no bounding box was found were empty or ’ghost’
images. Consequently, we suggest further exploring and fine-tuning the sequencing approach for
the wildlife classification domain and beyond.
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Appendix A

Appendix to the results

A.1 Class-wise ENA24 Dataset results

This appendix section contains class-wise results from the experiments run on the ENA24 dataset
[61] Reported scores are results from classification on the test set.

Table A.1: Comparing Yolov5l to Yolov5s performance on the ENA dataset

Y5sENA640xCropRGBTrain100 Y5lENA640xCropRGBTrain100

Support Precision Recall F1 Precision Recall F1

All - Weighed 1757 90.24% 92.64% 0.913 90.28% 94.85% 0.924
All - Average 1757 90.50% 92.60% 0.915 91.00% 94.60% 0.928
Bird (0) 40 83.90% 91.50% 0.875 80.10% 90.50% 0.850
Eastern Gray Squirrel (1) 60 91.90% 94.40% 0.931 91.60% 96.70% 0.941
Eastern Chipmunk (2) 62 98.20% 90.30% 0.941 99.90% 91.90% 0.957
Woodchuck (3) 41 95.60% 97.60% 0.966 96.40% 97.60% 0.970
Wild Turkey (4) 58 73.00% 83.70% 0.780 68.60% 82.80% 0.750
White Tailed Deer (5) 68 86.70% 95.70% 0.910 90.00% 95.60% 0.927
Virginia Opossum (6) 145 99.50% 97.20% 0.983 99.70% 97.20% 0.984
Eastern Cottontail (7) 57 81.30% 93.00% 0.868 81.80% 94.70% 0.878
American Black Bear (8) 179 92.60% 93.30% 0.929 92.50% 96.10% 0.943
Vehicle (9) 28 83.20% 88.40% 0.857 84.40% 92.90% 0.884
Striped Skunk (10) 59 96.30% 89.20% 0.926 99.00% 98.30% 0.986
Red Fox (11) 83 98.70% 93.80% 0.962 95.80% 95.20% 0.955
Eastern Fox Squirrel (12) 68 93.00% 97.10% 0.950 98.20% 100.00% 0.991
Northern Raccoon (13) 58 99.50% 98.30% 0.989 99.70% 100.00% 0.998
Grey Fox (14) 84 85.10% 88.20% 0.866 86.60% 92.10% 0.893
Horse (15) 12 93.30% 91.70% 0.925 100.00% 90.80% 0.952
Dog (16) 140 96.10% 98.60% 0.973 96.40% 98.60% 0.975
American Crow (17) 184 74.10% 88.00% 0.805 71.90% 91.80% 0.806
Chicken (18) 104 80.50% 78.80% 0.796 77.40% 85.70% 0.813
Domestic Cat (19) 96 98.90% 97.50% 0.982 98.90% 97.90% 0.984
Coyote (20) 66 96.40% 98.50% 0.974 95.40% 100.00% 0.976
Bobcat (21) 65 92.60% 92.30% 0.924 97.50% 95.40% 0.964
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Table A.2: Results of training subset size reduction on ENA dataset using Yolov5s (1/2)

Y5sENA640xCropRGBTrain100 Y5sENA640xCropRGBTrain50

Class Precision Recall F1 Precision Recall F1

All - Weighed 90.24% 92.64% 0.913 86.96% 89.10% 0.879
All - Average 90.50% 92.60% 0.915 86.60% 88.40% 0.875
Bird (0) 83.90% 91.50% 0.875 63.00% 67.50% 0.652
Eastern Gray Squirrel (1) 91.90% 94.40% 0.931 89.50% 90.00% 0.897
Eastern Chipmunk (2) 98.20% 90.30% 0.941 98.20% 89.70% 0.938
Woodchuck (3) 95.60% 97.60% 0.966 95.30% 99.90% 0.975
Wild Turkey (4) 73.00% 83.70% 0.780 63.40% 75.90% 0.691
White Tailed Deer (5) 86.70% 95.70% 0.910 83.90% 91.80% 0.877
Virginia Opossum (6) 99.50% 97.20% 0.983 97.10% 95.20% 0.961
Eastern Cottontail (7) 81.30% 93.00% 0.868 75.50% 82.50% 0.788
American Black Bear (8) 92.60% 93.30% 0.929 91.70% 92.70% 0.922
Vehicle (9) 83.20% 88.40% 0.857 74.00% 81.20% 0.774
Striped Skunk (10) 96.30% 89.20% 0.926 92.80% 88.10% 0.904
Red Fox (11) 98.70% 93.80% 0.962 94.90% 90.30% 0.925
Eastern Fox Squirrel (12) 93.00% 97.10% 0.950 98.00% 91.20% 0.945
Northern Raccoon (13) 99.50% 98.30% 0.989 94.80% 96.60% 0.957
Grey Fox (14) 85.10% 88.20% 0.866 78.70% 83.80% 0.812
Horse (15) 93.30% 91.70% 0.925 97.90% 91.70% 0.947
Dog (16) 96.10% 98.60% 0.973 97.10% 96.00% 0.965
American Crow (17) 74.10% 88.00% 0.805 72.80% 83.20% 0.777
Chicken (18) 80.50% 78.80% 0.796 74.40% 78.80% 0.765
Domestic Cat (19) 98.90% 97.50% 0.982 89.60% 96.90% 0.931
Coyote (20) 96.40% 98.50% 0.974 93.70% 90.70% 0.922
Bobcat (21) 92.60% 92.30% 0.924 89.70% 90.80% 0.902

Table A.3: Results of training subset size reduction on ENA dataset using Yolov5s (2/2)

Y5sENA640xCropRGBTrain20 Y5sENA640xCropRGBTrain10 Y5sENA640xCropRGBTrain5

Class Precision Recall F1 Precision Recall F1 Precision Recall F1

All - Weighed 84.85% 79.61% 0.819 75.55% 70.12% 0.718 66.67% 60.72% 0.629
All - Average 85.00% 77.30% 0.810 73.00% 66.00% 0.693 65.80% 52.10% 0.582
Bird (0) 69.60% 51.40% 0.591 60.30% 50.00% 0.547 43.00% 25.00% 0.316
Eastern Gray Squirrel (1) 78.60% 71.70% 0.750 69.50% 57.10% 0.627 66.20% 45.00% 0.536
Eastern Chipmunk (2) 90.70% 79.00% 0.844 94.60% 75.80% 0.842 81.40% 63.50% 0.713
Woodchuck (3) 85.80% 80.50% 0.831 68.10% 68.30% 0.682 61.80% 68.30% 0.649
Wild Turkey (4) 67.00% 66.50% 0.667 60.80% 67.20% 0.638 48.80% 39.70% 0.438
White Tailed Deer (5) 86.20% 80.90% 0.835 81.00% 68.90% 0.745 66.50% 51.50% 0.580
Virginia Opossum (6) 98.00% 93.80% 0.959 94.50% 92.40% 0.934 92.90% 92.40% 0.926
Eastern Cottontail (7) 74.00% 70.20% 0.720 65.00% 56.10% 0.602 61.40% 39.10% 0.478
American Black Bear (8) 90.40% 89.30% 0.898 88.60% 82.30% 0.853 86.80% 79.90% 0.832
Vehicle (9) 99.70% 60.70% 0.755 94.40% 60.40% 0.737 100.00% 46.30% 0.633
Striped Skunk (10) 95.10% 78.00% 0.857 89.20% 42.10% 0.572 62.60% 37.30% 0.467
Red Fox (11) 91.90% 72.30% 0.809 72.40% 57.00% 0.638 47.30% 51.80% 0.494
Eastern Fox Squirrel (12) 85.70% 82.40% 0.840 60.10% 66.30% 0.630 47.20% 40.80% 0.438
Northern Raccoon (13) 93.50% 81.00% 0.868 75.70% 63.80% 0.692 43.70% 32.80% 0.375
Grey Fox (14) 73.60% 72.60% 0.731 54.50% 67.90% 0.605 52.50% 55.30% 0.539
Horse (15) 100.00% 90.50% 0.950 56.60% 58.30% 0.574 0.00% 0.00% 0
Dog (16) 96.10% 87.70% 0.917 90.20% 78.60% 0.840 75.40% 77.90% 0.766
American Crow (17) 71.60% 82.60% 0.767 69.30% 80.80% 0.746 65.80% 77.30% 0.711
Chicken (18) 77.30% 65.40% 0.709 65.40% 60.10% 0.626 60.70% 52.00% 0.560
Domestic Cat (19) 89.50% 77.10% 0.828 80.50% 55.90% 0.660 79.60% 56.90% 0.664
Coyote (20) 93.10% 95.50% 0.943 88.40% 81.20% 0.846 79.60% 80.30% 0.799
Bobcat (21) 61.80% 70.80% 0.660 27.70% 61.50% 0.382 23.90% 32.30% 0.275
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Table A.4: Influence of image compression and grayscale conversion on the performance of the
Yolov5s model (1/2)

Y5sENA640xCropRGBTrain100 Y5sENA640xCropGTrain100

Precision Recall F1 Precision Recall F1

All - Weighed 90.24% 92.64% 0.913 90.55% 91.97% 0.912
All - Average 90.50% 92.60% 0.915 91.00% 91.40% 0.912
Bird (0) 83.90% 91.50% 0.875 77.40% 82.50% 0.799
Eastern Gray Squirrel (1) 91.90% 94.40% 0.931 91.90% 94.20% 0.930
Eastern Chipmunk (2) 98.20% 90.30% 0.941 99.70% 88.70% 0.939
Woodchuck (3) 95.60% 97.60% 0.966 92.80% 93.90% 0.933
Wild Turkey (4) 73.00% 83.70% 0.780 76.10% 77.00% 0.765
White Tailed Deer (5) 86.70% 95.70% 0.910 90.20% 94.90% 0.925
Virginia Opossum (6) 99.50% 97.20% 0.983 99.30% 97.20% 0.982
Eastern Cottontail (7) 81.30% 93.00% 0.868 81.90% 87.40% 0.846
American Black Bear (8) 92.60% 93.30% 0.929 92.40% 95.60% 0.940
Vehicle (9) 83.20% 88.40% 0.857 89.90% 85.70% 0.877
Striped Skunk (10) 96.30% 89.20% 0.926 96.50% 92.20% 0.943
Red Fox (11) 98.70% 93.80% 0.962 97.90% 92.80% 0.953
Eastern Fox Squirrel (12) 93.00% 97.10% 0.950 96.20% 97.10% 0.966
Northern Raccoon (13) 99.50% 98.30% 0.989 100.00% 97.40% 0.987
Grey Fox (14) 85.10% 88.20% 0.866 85.00% 90.50% 0.877
Horse (15) 93.30% 91.70% 0.925 97.20% 91.70% 0.944
Dog (16) 96.10% 98.60% 0.973 96.50% 97.10% 0.968
American Crow (17) 74.10% 88.00% 0.805 75.70% 86.40% 0.807
Chicken (18) 80.50% 78.80% 0.796 78.00% 78.80% 0.784
Domestic Cat (19) 98.90% 97.50% 0.982 96.60% 97.90% 0.972
Coyote (20) 96.40% 98.50% 0.974 95.20% 98.50% 0.968
Bobcat (21) 92.60% 92.30% 0.924 96.30% 93.80% 0.950

Table A.5: Influence of image compression and grayscale conversion on the performance of the
Yolov5s model (2/2)

Y5sENA640xCropGNTrain100 Y5sENA640xCropGWTrain100 Y5sENA640xCropGWNTrain100

Precision Recall F1 Precision Recall F1 Precision Recall F1

All - Weighed 90.90% 91.31% 0.910 89.81% 92.97% 0.912 89.51% 93.03% 0.911
All - Average 91.20% 90.70% 0.909 90.00% 92.30% 0.911 89.80% 92.60% 0.912
Bird (0) 78.50% 82.40% 0.804 76.00% 82.50% 0.791 75.60% 85.00% 0.800
Eastern Gray Squirrel (1) 91.30% 83.30% 0.871 92.00% 95.50% 0.937 90.20% 92.40% 0.913
Eastern Chipmunk (2) 100.00% 89.10% 0.942 100.00% 91.40% 0.955 98.00% 90.30% 0.940
Woodchuck (3) 97.50% 94.80% 0.961 97.50% 96.10% 0.968 96.00% 92.70% 0.943
Wild Turkey (4) 74.60% 74.10% 0.743 70.90% 79.80% 0.751 74.80% 81.80% 0.781
White Tailed Deer (5) 90.00% 94.10% 0.920 89.10% 96.10% 0.925 90.20% 98.50% 0.942
Virginia Opossum (6) 98.90% 97.20% 0.980 100.00% 98.00% 0.990 98.30% 97.90% 0.981
Eastern Cottontail (7) 79.30% 87.40% 0.832 78.70% 90.60% 0.842 76.90% 91.20% 0.834
American Black Bear (8) 92.30% 93.70% 0.930 93.30% 93.80% 0.935 91.90% 94.50% 0.932
Vehicle (9) 83.20% 89.30% 0.861 85.20% 85.70% 0.854 85.00% 85.70% 0.853
Striped Skunk (10) 99.70% 93.20% 0.963 90.90% 84.80% 0.877 100.00% 95.60% 0.978
Red Fox (11) 97.20% 94.00% 0.956 97.70% 91.60% 0.946 96.90% 94.00% 0.954
Eastern Fox Squirrel (12) 99.80% 97.10% 0.984 97.50% 98.50% 0.980 96.20% 98.50% 0.973
Northern Raccoon (13) 97.90% 98.30% 0.981 98.50% 100.00% 0.992 99.20% 98.30% 0.987
Grey Fox (14) 87.10% 88.10% 0.876 85.80% 90.50% 0.881 87.10% 89.30% 0.882
Horse (15) 98.10% 91.70% 0.948 95.30% 91.70% 0.935 94.40% 91.70% 0.930
Dog (16) 97.20% 97.50% 0.973 96.50% 98.50% 0.975 96.00% 95.70% 0.958
American Crow (17) 77.00% 87.50% 0.819 72.60% 89.70% 0.802 73.70% 89.70% 0.809
Chicken (18) 81.00% 78.10% 0.795 79.20% 84.40% 0.817 77.80% 80.80% 0.793
Domestic Cat (19) 97.20% 97.90% 0.975 96.60% 97.90% 0.972 96.40% 99.00% 0.977
Coyote (20) 94.10% 97.00% 0.955 94.60% 98.50% 0.965 93.60% 98.50% 0.960
Bobcat (21) 93.60% 90.70% 0.921 92.30% 95.40% 0.938 87.20% 95.40% 0.911

Lightweight wildlife classification on the edge 55



APPENDIX A. APPENDIX TO THE RESULTS

T
ab

le
A

.6
:

In
fl

u
en

ce
of

in
p

u
t

d
im

en
si

o
n

a
li

ty
re

d
u

ct
io

n
o
n

th
e

p
er

fo
rm

a
n

ce
o
f

Y
o
lo

v
5
s

m
o
d

el

Y
5
sE

N
A
6
4
0
x
C
ro

p
R
G
B
T
ra

in
1
0
0

Y
5
sE

N
A
2
2
4
x
C
ro

p
G
W

N
T
ra

in
1
0
0

Y
5
sE

N
A
2
2
4
x
C
ro

p
G
W

N
T
ra

in
2
0

Y
5
sE

N
A
6
4
x
C
ro

p
G
N
T
ra

in
1
0
0

S
u
p
p
o
rt

P
re
c
is
io
n

R
e
c
a
ll

F
1

P
re
c
is
io
n

R
e
c
a
ll

F
1

P
re
c
is
io
n

R
e
c
a
ll

F
1

P
re
c
is
io
n

R
e
c
a
ll

F
1

A
ll

-
W

e
ig
h
e
d

1
7
5
7

9
0
.2
4
%

9
2
.6
4
%

0
.9
1
3

8
9
.9
9
%

8
6
.4
8
%

0
.8
8
1

7
8
.6
9
%

7
1
.3
6
%

0
.7
4
5

6
1
.5
3
%

4
9
.9
4
%

0
.5
4
0

A
ll

-
A
v
e
ra

g
e

1
7
5
7

9
0
.5
0
%

9
2
.6
0
%

0
.9
1
5

8
9
.7
0
%

8
5
.6
0
%

0
.8
7
6

7
7
.5
0
%

6
7
.4
0
%

0
.7
2
1

6
4
.7
0
%

4
4
.3
0
%

0
.5
2
6

B
ir
d

(0
)

4
0

8
3
.9
0
%

9
1
.5
0
%

0
.8
7
5

8
0
.3
0
%

7
2
.5
0
%

0
.7
6
2

4
8
.3
0
%

3
7
.4
0
%

0
.4
2
2

7
0
.2
0
%

2
5
.0
0
%

0
.3
6
9

E
a
st
e
rn

G
ra
y
S
q
u
ir
re
l
(1

)
6
0

9
1
.9
0
%

9
4
.4
0
%

0
.9
3
1

7
4
.4
0
%

6
3
.0
0
%

0
.6
8
2

4
6
.6
0
%

3
3
.3
0
%

0
.3
8
8

0
.0
0
%

0
.0
0
%

0
E
a
st
e
rn

C
h
ip
m
u
n
k
(2

)
6
2

9
8
.2
0
%

9
0
.3
0
%

0
.9
4
1

8
9
.1
0
%

6
7
.7
0
%

0
.7
6
9

7
4
.1
0
%

4
6
.2
0
%

0
.5
6
9

0
.0
0
%

0
.0
0
%

0
W

o
o
d
ch

u
ck

(3
)

4
1

9
5
.6
0
%

9
7
.6
0
%

0
.9
6
6

9
4
.6
0
%

9
5
.1
0
%

0
.9
4
8

9
7
.0
0
%

7
7
.9
0
%

0
.8
6
4

5
6
.4
0
%

3
7
.9
0
%

0
.4
5
3

W
il
d

T
u
rk

e
y
(4

)
5
8

7
3
.0
0
%

8
3
.7
0
%

0
.7
8
0

7
5
.5
0
%

7
5
.9
0
%

0
.7
5
7

6
2
.7
0
%

4
6
.3
0
%

0
.5
3
3

4
2
.7
0
%

3
4
.5
0
%

0
.3
8
2

W
h
it
e
T
a
il
e
d

D
e
e
r
(5

)
6
8

8
6
.7
0
%

9
5
.7
0
%

0
.9
1
0

8
9
.4
0
%

9
2
.6
0
%

0
.9
1
0

8
7
.4
0
%

7
7
.9
0
%

0
.8
2
4

8
0
.2
0
%

8
3
.8
0
%

0
.8
2
0

V
ir
g
in
ia

O
p
o
ss
u
m

(6
)

1
4
5

9
9
.5
0
%

9
7
.2
0
%

0
.9
8
3

9
9
.3
0
%

9
5
.6
0
%

0
.9
7
4

9
7
.8
0
%

9
2
.1
0
%

0
.9
4
9

8
0
.1
0
%

8
3
.4
0
%

0
.8
1
7

E
a
st
e
rn

C
o
tt
o
n
ta

il
(7

)
5
7

8
1
.3
0
%

9
3
.0
0
%

0
.8
6
8

8
4
.2
0
%

8
7
.7
0
%

0
.8
5
9

6
0
.8
0
%

6
4
.9
0
%

0
.6
2
8

3
8
.4
0
%

5
.4
9
%

0
.0
9
6

A
m
e
ri
c
a
n

B
la
ck

B
e
a
r
(8

)
1
7
9

9
2
.6
0
%

9
3
.3
0
%

0
.9
2
9

9
2
.0
0
%

8
9
.7
0
%

0
.9
0
8

8
4
.2
0
%

8
6
.6
0
%

0
.8
5
4

8
1
.2
0
%

7
6
.5
0
%

0
.7
8
8

V
e
h
ic
le

(9
)

2
8

8
3
.2
0
%

8
8
.4
0
%

0
.8
5
7

7
9
.5
0
%

7
5
.0
0
%

0
.7
7
2

8
8
.0
0
%

5
0
.0
0
%

0
.6
3
8

9
0
.7
0
%

4
6
.4
0
%

0
.6
1
4

S
tr
ip
e
d

S
k
u
n
k
(1

0
)

5
9

9
6
.3
0
%

8
9
.2
0
%

0
.9
2
6

9
3
.9
0
%

8
9
.8
0
%

0
.9
1
8

8
0
.5
0
%

7
6
.8
0
%

0
.7
8
6

5
8
.3
0
%

4
0
.2
0
%

0
.4
7
6

R
e
d

F
o
x
(1

1
)

8
3

9
8
.7
0
%

9
3
.8
0
%

0
.9
6
2

9
4
.0
0
%

8
5
.5
0
%

0
.8
9
5

8
2
.0
0
%

6
5
.9
0
%

0
.7
3
1

5
2
.2
0
%

4
6
.0
0
%

0
.4
8
9

E
a
st
e
rn

F
o
x
S
q
u
ir
re
l
(1

2
)

6
8

9
3
.0
0
%

9
7
.1
0
%

0
.9
5
0

9
4
.0
0
%

9
1
.2
0
%

0
.9
2
6

8
6
.3
0
%

7
4
.0
0
%

0
.7
9
7

5
8
.1
0
%

3
6
.8
0
%

0
.4
5
1

N
o
rt
h
e
rn

R
a
c
c
o
o
n

(1
3
)

5
8

9
9
.5
0
%

9
8
.3
0
%

0
.9
8
9

9
8
.2
0
%

9
2
.3
0
%

0
.9
5
2

8
0
.4
0
%

7
0
.5
0
%

0
.7
5
1

5
8
.6
0
%

3
1
.0
0
%

0
.4
0
5

G
re
y
F
o
x
(1

4
)

8
4

8
5
.1
0
%

8
8
.2
0
%

0
.8
6
6

9
3
.6
0
%

8
6
.6
0
%

0
.9
0
0

8
1
.5
0
%

7
3
.3
0
%

0
.7
7
2

5
1
.3
0
%

4
0
.2
0
%

0
.4
5
1

H
o
rs
e
(1

5
)

1
2

9
3
.3
0
%

9
1
.7
0
%

0
.9
2
5

9
3
.4
0
%

9
1
.7
0
%

0
.9
2
5

8
8
.1
0
%

8
3
.3
0
%

0
.8
5
6

9
3
.1
0
%

7
5
.0
0
%

0
.8
3
1

D
o
g
(1

6
)

1
4
0

9
6
.1
0
%

9
8
.6
0
%

0
.9
7
3

9
7
.3
0
%

9
4
.3
0
%

0
.9
5
8

9
0
.1
0
%

8
5
.0
0
%

0
.8
7
5

7
6
.5
0
%

6
2
.9
0
%

0
.6
9
0

A
m
e
ri
c
a
n

C
ro
w

(1
7
)

1
8
4

7
4
.1
0
%

8
8
.0
0
%

0
.8
0
5

7
6
.8
0
%

8
1
.0
0
%

0
.7
8
8

6
9
.1
0
%

7
5
.5
0
%

0
.7
2
2

5
9
.5
0
%

6
1
.4
0
%

0
.6
0
4

C
h
ic
k
e
n

(1
8
)

1
0
4

8
0
.5
0
%

7
8
.8
0
%

0
.7
9
6

8
1
.8
0
%

7
7
.6
0
%

0
.7
9
6

6
3
.5
0
%

5
6
.7
0
%

0
.5
9
9

6
0
.7
0
%

4
3
.3
0
%

0
.5
0
5

D
o
m
e
st
ic

C
a
t
(1

9
)

9
6

9
8
.9
0
%

9
7
.5
0
%

0
.9
8
2

9
6
.2
0
%

9
1
.7
0
%

0
.9
3
9

8
9
.5
0
%

7
1
.9
0
%

0
.7
9
7

5
2
.6
0
%

3
7
.5
0
%

0
.4
3
8

C
o
y
o
te

(2
0
)

6
6

9
6
.4
0
%

9
8
.5
0
%

0
.9
7
4

9
8
.4
0
%

9
5
.4
0
%

0
.9
6
9

9
1
.5
0
%

8
2
.1
0
%

0
.8
6
5

9
1
.3
0
%

7
9
.1
0
%

0
.8
4
8

B
o
b
c
a
t
(2

1
)

6
5

9
2
.6
0
%

9
2
.3
0
%

0
.9
2
4

9
6
.7
0
%

9
0
.1
0
%

0
.9
3
3

5
6
.0
0
%

5
5
.4
0
%

0
.5
5
7

7
0
.6
0
%

2
9
.2
0
%

0
.4
1
3

56 Lightweight wildlife classification on the edge



APPENDIX A. APPENDIX TO THE RESULTS

Table A.7: Performance of VAE-SVM-4M versus VAE-SVM-665k on ENA64xCrop dataset

VAE-SVM-4M VAE-SVM-665K

Class support precision recall f1-score precision recall f1-score

All - Average 1757 66.38% 63.63% 0.632 67.38% 63.69% 0.634
All - Weighed 1757 64.62% 55.07% 0.579 65.36% 55.41% 0.581
Bird (0) 40 73.08% 47.50% 0.576 75.00% 52.50% 0.618
Eastern Gray Squirrel (1) 60 92.50% 61.67% 0.740 97.37% 61.67% 0.755
Eastern Chipmunk (2) 62 96.67% 93.55% 0.951 94.92% 90.32% 0.926
Woodchuck (3) 41 96.43% 65.85% 0.783 100.00% 60.98% 0.758
Wild Turkey (4) 58 84.00% 36.21% 0.506 80.95% 29.31% 0.430
White Tailed Deer (5) 68 59.72% 63.24% 0.614 47.00% 69.12% 0.560
Virginia Opossum (6) 145 86.06% 97.93% 0.916 86.59% 97.93% 0.919
Eastern Cottontail (7) 57 37.50% 15.79% 0.222 41.67% 17.54% 0.247
American Black Bear (8) 179 40.23% 77.09% 0.529 41.02% 76.54% 0.534
Vehicle (9) 28 55.00% 39.29% 0.458 48.15% 46.43% 0.473
Striped Skunk (10) 59 49.06% 44.07% 0.464 48.08% 42.37% 0.450
Red Fox (11) 83 39.36% 44.58% 0.418 44.19% 45.78% 0.450
Eastern Fox Squirrel (12) 68 81.03% 69.12% 0.746 73.77% 66.18% 0.698
Northern Raccoon (13) 58 80.65% 43.10% 0.562 82.76% 41.38% 0.552
Grey Fox (14) 84 59.49% 55.95% 0.577 76.19% 57.14% 0.653
Horse (15) 12 0.00% 0.00% 0.000 0.00% 0.00% 0.000
Dog (16) 140 75.38% 70.00% 0.726 82.20% 69.29% 0.752
American Crow (17) 184 71.04% 85.33% 0.775 67.39% 84.24% 0.749
Chicken (18) 104 86.73% 81.73% 0.842 85.86% 81.73% 0.837
Domestic Cat (19) 96 51.95% 41.67% 0.462 54.79% 41.67% 0.473
Coyote (20) 66 76.32% 43.94% 0.558 82.93% 51.52% 0.636
Bobcat (21) 65 29.33% 33.85% 0.314 27.06% 35.38% 0.307
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A.2 Class-wise Islands dataset results

This appendix section contains class-wise results from the experiments run on the Channel Islands
[18] dataset. Reported scores are results from classification on the test set.

Table A.8: Comparison: Best performing Ghost model and Yolov5s models on ISL224xCropTrain5
and ISL224xSeqTrain5 data

Ghostnet: Seq. Yolov5s: Crop. Yolov5s: Seq.

Class support Precision Recall F1 Precision Recall F1 Precision Recall F1

All - Weighed 8593 74.37% 72.98% 0.732 43.69% 48.62% 0.432 81.43% 81.88% 0.810
Empty (0) 3981 77.32% 82.65% 0.799 62.90% 91.80% 0.747 79.60% 88.70% 0.839
Other (1) 2 0.00% 0.00% 0.000 0.00% 0.00% 0.000 0.00% 0.00% 0.000
Fox (2) 1831 60.29% 68.83% 0.643 68.30% 28.60% 0.403 94.20% 67.20% 0.784
Skunk (3) 24 0.00% 0.00% 0.000 0.00% 0.00% 0.000 0.00% 0.00% 0.000
Rodent (4) 2544 86.83% 67.64% 0.760 0.00% 0.00% 0.000 80.30% 87.70% 0.838
Bird (5) 212 0.00% 0.00% 0.000 0.00% 0.00% 0.000 28.80% 20.30% 0.238

Table A.9: Performance of VAE-SVM-4M versus VAE-SVM-665k on ISL64xCrop dataset

VAE-SVM-4M VAE-SVM-665k

Class support precision recall f1-score precision recall f1-score

All - Weighed 8593 78.64% 79.91% 0.789 77.42% 79.01% 0.779
Empty (0) 3981 82.97% 82.84% 0.829 82.19% 83.35% 0.828
Other (1) 2 0.00% 0.00% 0.000 0.00% 0.00% 0.000
Fox (2) 1831 74.19% 72.69% 0.734 72.46% 68.10% 0.702
Skunk (3) 24 0.00% 0.00% 0.000 0.00% 0.00% 0.000
Rodent (4) 2544 79.61% 87.66% 0.834 78.86% 87.22% 0.828
Bird (5) 212 33.33% 3.77% 0.068 22.73% 2.36% 0.043

Table A.10: Performance of VAE-4M and Yolov5s on ISL64x Crop and Seq. datasets

VAE-SVM-4M: crop data VAE-SVM-4M: seq. data Yolov5s: crop data Yolov5s: seq. data

Class support* precision recall f1-score precision recall f1-score precision recall f1-score precision recall f1-score

All - Weighed 8593 78.64% 79.91% 0.789 71.04% 71.58% 0.702 37.01% 44.61% 0.358 44.79% 62.27% 0.496
Empty (0) 3981 82.97% 82.84% 0.829 84.79% 78.15% 0.813 45.90% 84.10% 0.594 37.20% 76.10% 0.500
Other (1) 2 0.00% 0.00% 0.000 0.00% 0.00% 0.000 0.00% 0.00% 0.000 0.00% 0.00% 0.000
Fox (2) 1831 74.19% 72.69% 0.734 64.56% 44.67% 0.528 73.90% 26.50% 0.390 66.50% 43.70% 0.527
Skunk (3) 24 0.00% 0.00% 0.000 0.00% 0.00% 0.000 0.00% 0.00% 0.000 0.00% 0.00% 0.000
Rodent (4) 2544 79.61% 87.66% 0.834 60.79% 87.34% 0.717 0.00% 0.00% 0.000 45.20% 59.80% 0.515
Bird (5) 212 33.33% 3.77% 0.068 0.00% 0.00% 0.000 0.00% 0.00% 0.000 0.00% 0.00% 0.000

*Yolov5s tested on one (1) fewer ’empty’ class image. This was taken into account for calculations.
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Appendix B

Appendix: miscellaneous

This appendix chapter contains the appendixes on the number of parameters in the VAE models,
class distributions, and information regarding the test and validation subsets.

B.1 VAE: number of trainable parameters

This section showcases the number of trainable parameters of the VAE models. This does not
include the SVM support vector parameters (weights) which are part of the VAE-SVM model.

Model parameters of VAE 665k model:

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
| Modules | Parameters |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
| encoder . encoder . 0 . 0 . weight | 864 |
| encoder . encoder . 0 . 0 . b i a s | 32 |
| encoder . encoder . 0 . 1 . weight | 32 |
| encoder . encoder . 0 . 1 . b i a s | 32 |
| encoder . encoder . 1 . 0 . weight | 18432 |
| encoder . encoder . 1 . 0 . b i a s | 64 |
| encoder . encoder . 1 . 1 . weight | 64 |
| encoder . encoder . 1 . 1 . b i a s | 64 |
| encoder . encoder . 2 . 0 . weight | 36864 |
| encoder . encoder . 2 . 0 . b i a s | 64 |
| encoder . encoder . 2 . 1 . weight | 64 |
| encoder . encoder . 2 . 1 . b i a s | 64 |
| encoder . encoder . 3 . 0 . weight | 73728 |
| encoder . encoder . 3 . 0 . b i a s | 128 |
| encoder . encoder . 3 . 1 . weight | 128 |
| encoder . encoder . 3 . 1 . b i a s | 128 |
| encoder . encoder . 4 . 0 . weight | 147456 |
| encoder . encoder . 4 . 0 . b i a s | 128 |
| encoder . encoder . 4 . 1 . weight | 128 |
| encoder . encoder . 4 . 1 . b i a s | 128 |
| encoder . fc mu . weight | 32768 |
| encoder . fc mu . b i a s | 64 |
| encoder . f c v a r . weight | 32768 |
| encoder . f c v a r . b i a s | 64 |
| decoder input . weight | 32768 |
| decoder input . b i a s | 512 |
| decoder . 0 . 0 . weight | 147456 |
| decoder . 0 . 0 . b i a s | 128 |
| decoder . 0 . 1 . weight | 128 |
| decoder . 0 . 1 . b i a s | 128 |
| decoder . 1 . 0 . weight | 73728 |
| decoder . 1 . 0 . b i a s | 64 |
| decoder . 1 . 1 . weight | 64 |
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| decoder . 1 . 1 . b i a s | 64 |
| decoder . 2 . 0 . weight | 36864 |
| decoder . 2 . 0 . b i a s | 64 |
| decoder . 2 . 1 . weight | 64 |
| decoder . 2 . 1 . b i a s | 64 |
| decoder . 3 . 0 . weight | 18432 |
| decoder . 3 . 0 . b i a s | 32 |
| decoder . 3 . 1 . weight | 32 |
| decoder . 3 . 1 . b i a s | 32 |
| f i n a l l a y e r . 0 . weight | 9216 |
| f i n a l l a y e r . 0 . b i a s | 32 |
| f i n a l l a y e r . 1 . weight | 32 |
| f i n a l l a y e r . 1 . b i a s | 32 |
| f i n a l l a y e r . 3 . weight | 864 |
| f i n a l l a y e r . 3 . b i a s | 3 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
Total Tra inable Params f u l l VAE model : 665059

Model parameters of VAE 665k model, encoder only:

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
| Modules | Parameters |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
| encoder . encoder . 0 . 0 . weight | 864 |
| encoder . encoder . 0 . 0 . b i a s | 32 |
| encoder . encoder . 0 . 1 . weight | 32 |
| encoder . encoder . 0 . 1 . b i a s | 32 |
| encoder . encoder . 1 . 0 . weight | 18432 |
| encoder . encoder . 1 . 0 . b i a s | 64 |
| encoder . encoder . 1 . 1 . weight | 64 |
| encoder . encoder . 1 . 1 . b i a s | 64 |
| encoder . encoder . 2 . 0 . weight | 36864 |
| encoder . encoder . 2 . 0 . b i a s | 64 |
| encoder . encoder . 2 . 1 . weight | 64 |
| encoder . encoder . 2 . 1 . b i a s | 64 |
| encoder . encoder . 3 . 0 . weight | 73728 |
| encoder . encoder . 3 . 0 . b i a s | 128 |
| encoder . encoder . 3 . 1 . weight | 128 |
| encoder . encoder . 3 . 1 . b i a s | 128 |
| encoder . encoder . 4 . 0 . weight | 147456 |
| encoder . encoder . 4 . 0 . b i a s | 128 |
| encoder . encoder . 4 . 1 . weight | 128 |
| encoder . encoder . 4 . 1 . b i a s | 128 |
| encoder . fc mu . weight | 32768 |
| encoder . fc mu . b i a s | 64 |
| encoder . f c v a r . weight | 32768 |
| encoder . f c v a r . b i a s | 64 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
Total Tra inable Params Encoder: 344256
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Model parameters of VAE-4M model:

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
| Modules | Parameters |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
| encoder . encoder . 0 . 0 . weight | 864 |
| encoder . encoder . 0 . 0 . b i a s | 32 |
| encoder . encoder . 0 . 1 . weight | 32 |
| encoder . encoder . 0 . 1 . b i a s | 32 |
| encoder . encoder . 1 . 0 . weight | 18432 |
| encoder . encoder . 1 . 0 . b i a s | 64 |
| encoder . encoder . 1 . 1 . weight | 64 |
| encoder . encoder . 1 . 1 . b i a s | 64 |
| encoder . encoder . 2 . 0 . weight | 73728 |
| encoder . encoder . 2 . 0 . b i a s | 128 |
| encoder . encoder . 2 . 1 . weight | 128 |
| encoder . encoder . 2 . 1 . b i a s | 128 |
| encoder . encoder . 3 . 0 . weight | 294912 |
| encoder . encoder . 3 . 0 . b i a s | 256 |
| encoder . encoder . 3 . 1 . weight | 256 |
| encoder . encoder . 3 . 1 . b i a s | 256 |
| encoder . encoder . 4 . 0 . weight | 1179648 |
| encoder . encoder . 4 . 0 . b i a s | 512 |
| encoder . encoder . 4 . 1 . weight | 512 |
| encoder . encoder . 4 . 1 . b i a s | 512 |
| encoder . fc mu . weight | 262144 |
| encoder . fc mu . b i a s | 128 |
| encoder . f c v a r . weight | 262144 |
| encoder . f c v a r . b i a s | 128 |
| decoder input . weight | 262144 |
| decoder input . b i a s | 2048 |
| decoder . 0 . 0 . weight | 1179648 |
| decoder . 0 . 0 . b i a s | 256 |
| decoder . 0 . 1 . weight | 256 |
| decoder . 0 . 1 . b i a s | 256 |
| decoder . 1 . 0 . weight | 294912 |
| decoder . 1 . 0 . b i a s | 128 |
| decoder . 1 . 1 . weight | 128 |
| decoder . 1 . 1 . b i a s | 128 |
| decoder . 2 . 0 . weight | 73728 |
| decoder . 2 . 0 . b i a s | 64 |
| decoder . 2 . 1 . weight | 64 |
| decoder . 2 . 1 . b i a s | 64 |
| decoder . 3 . 0 . weight | 18432 |
| decoder . 3 . 0 . b i a s | 32 |
| decoder . 3 . 1 . weight | 32 |
| decoder . 3 . 1 . b i a s | 32 |
| f i n a l l a y e r . 0 . weight | 9216 |
| f i n a l l a y e r . 0 . b i a s | 32 |
| f i n a l l a y e r . 1 . weight | 32 |
| f i n a l l a y e r . 1 . b i a s | 32 |
| f i n a l l a y e r . 3 . weight | 864 |
| f i n a l l a y e r . 3 . b i a s | 3 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
Total Tra inable Params: 3937635
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Model parameters of VAE 665k model, encoder only:

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
| Modules | Parameters |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
| encoder . encoder . 0 . 0 . weight | 864 |
| encoder . encoder . 0 . 0 . b i a s | 32 |
| encoder . encoder . 0 . 1 . weight | 32 |
| encoder . encoder . 0 . 1 . b i a s | 32 |
| encoder . encoder . 1 . 0 . weight | 18432 |
| encoder . encoder . 1 . 0 . b i a s | 64 |
| encoder . encoder . 1 . 1 . weight | 64 |
| encoder . encoder . 1 . 1 . b i a s | 64 |
| encoder . encoder . 2 . 0 . weight | 73728 |
| encoder . encoder . 2 . 0 . b i a s | 128 |
| encoder . encoder . 2 . 1 . weight | 128 |
| encoder . encoder . 2 . 1 . b i a s | 128 |
| encoder . encoder . 3 . 0 . weight | 294912 |
| encoder . encoder . 3 . 0 . b i a s | 256 |
| encoder . encoder . 3 . 1 . weight | 256 |
| encoder . encoder . 3 . 1 . b i a s | 256 |
| encoder . encoder . 4 . 0 . weight | 1179648 |
| encoder . encoder . 4 . 0 . b i a s | 512 |
| encoder . encoder . 4 . 1 . weight | 512 |
| encoder . encoder . 4 . 1 . b i a s | 512 |
| encoder . fc mu . weight | 262144 |
| encoder . fc mu . b i a s | 128 |
| encoder . f c v a r . weight | 262144 |
| encoder . f c v a r . b i a s | 128 |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
Total Tra inable Params Encoder: 2095104
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B.2 Subset class distributions

This section showcases the distributions of the classes in both the ENA24 [61] and Channel Islands
[18] subsets.

Figure B.1: Class distributions of ENA subsets.
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Figure B.2: Class distributions of Channel Islands subsets.
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B.3 Test and validation subsets

This section contains the test and validation subsets for both the ENA24 [61] and Channel Islands
[18] datasets. The naming of the subsets indicate which steps were applied to the images during
the processing in the data pipeline. The set of images used for test and validation were selected
prior to model training once, and not changed.

Table B.1: Channel Islands dataset [18] test and validation subsets

Subset name Subset size Image dimensions Images Avg. size (kb)

ISLORIGxCropRGBTest20 5.5 GB original 8594 639.981
ISL224xCropRGBTest20 174.7 MB 224x224 8594 20.328
ISL224xSeqRGBTest20 159.4 MB 224x224 8594 18.548
ISL224xCropRGBVal20 136.3 MB 224x224 6703 20.334
ISL224xSeqRGBVal20 122.8 MB 224x224 6703 18.320
ISL64xCropRGBTest20 22.9 MB 64x64 8594 2.665
ISL64xSeqRGBTest20 21.9 MB 64x64 8594 2.548
ISL64xCropRGBVal20 17.8 MB 64x64 6703 2.656
ISL64xSeqRGBVal20 16.9 MB 64x64 6703 2.521

Table B.2: ENA24 dataset [61] test and validation subsets

Subset name Subset size Image dimensions Images Avg. size (kb)

ENAORIGxCropRGBTest 1.4 GB original 1757 796.813
ENAORIGxCropRGBVal 699.1 MB original 878 796.241
ENA640xCropRGBTest 260.9 MB 640x640 1757 148.492
ENA640xCropRGBVal 130.0 MB 640x640 878 148.064
ENA640xCropGTest 238.8 MB 640x640 1757 135.913
ENA640xCropGVal 118.9 MB 640x640 878 135.421
ENA640xCropGWTest 211.4 MB 640x640 1757 120.319
ENA640xCropGWVal 105.3 MB 640x640 878 119.932
ENA640xCropGNTest 104.2 MB 640x640 1757 59.306
ENA640xCropGNVal 51.9 MB 640x640 878 59.112
ENA640xCropGWNTest 90.4 MB 640x640 1757 51.451
ENA640xCropGWNVal 45.1 MB 640x640 878 51.367
ENA224xCropGWNTest 15.3 MB 224x224 1757 8.708
ENA224xCropGWNVal 7.7 MB 224x224 878 8.770
ENA64xCropGNTest 2.3 MB 64x64 1757 1.309
ENA64xCropGNVal 1.2 MB 64x64 878 1.367
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